Delivering the Energy Transition

In theory and practice ...

Michael Grubb

Prof. International Energy and Climate Change Policy, UCL

Chair, UK government Panel of Technical Experts on Energy Market Reform Editor-in-Chief, Climate Policy journal

Australia National University 6 December 2016

- Broadening our economic frameworks
- Emerging transition in practice
- Innovation and cost reductions
- Integrating policies
- Some international implications

The Energy Trilemma

Energy policy needs to address:

- Security
 - System resilience, over-concentration, geopolitical risk
- Affordability & competitiveness
 - Fuel poverty, the disconnected, 'industrial energy prices'
- Environment and sustainability
 - Air quality, climate change, mining and water

Prioritising one too much over the others generates instability Focus here particularly on electricity, increasingly important in other sectors (transport, buildings)

A systems issue ..

Broadening economic horizons

For a problem which spans from

- the inattentive decisionmaking of seven billion energy consumers, to
- long-term transformation
 of vast and complex
 infrastructure-based
 techno-economic
 systems

To date, far more progress on energy efficiency and technology / renewables etc policy than carbon pricing

Typical social and organisational scale

Ideal policy comprises a package which matches the best instrument to the respective domain of decision-making

Affordability – and energy prices

In the long run, countries with higher energy prices do not spend more of their income on energy

- Higher efficiency and innovation policies compensate
- Indeed countries that subsidised energy to keep it cheap have ended up spending more

Figure 6-1 The most important diagram in energy economics

Note: The graph plots average energy intensity against average energy prices (1990-2005) for a range of prices. The dotted line shows the line of constant energy expenditure (intensity x price) per unit GDP over the period. Source: After Newbery (2003), with updated data from International Energy Agency and EU KLEMS

The "Bashmakov-Newbery Constant"

- The proportion of national income spent on energy has remained surprisingly constant, given sufficient time to adjust
 - for more than a century
 - for most countries
- Despite huge variations in energy prices (Bashmakov)
- Cannot be explained through the classical measures of in-country consumer price response (elasticities) but needs also to invoke:
 - Energy efficiency regulation and related policy responses
 - Innovation throughout energy supply and product chains

Challenge is to accelerate efficiency & decarb-innovation for several decades without politically untenable policy-driven price shocks

From carbon prices, or eg. renewables support costs

The Three Domains link to wider debates about macroeconomic growth

- Economic research points to two key areas of economic growth in addition to resource accumulation:
 - Improving efficiency of many economic actors and structures
 - Education, infrastructure and innovation
- ie. First and Third domain processes are recognised as important for macroeconomic growth. Yet these remain
 - largely absent in global (or national) modelling
 - poorly charted in policy
- Energy is a particularly strong candidate because
 - Multiple product characteristics => structural inefficiencies
 - Historic instability of fossil fuel markets
 - Exceptionally low rates of innovation particularly electricity & construction
 - Pervasive input to numerous production sectors

Delivering the Energy Transition

In theory and practice ...

Michael Grubb

Prof. International Energy and Climate Change Policy, UCL

Chair, UK government Panel of Technical Experts on Energy Market Reform Editor-in-Chief, Climate Policy journal

Australia National University 6 December 2016

- Broadening our economic frameworks
- Emerging transition in practice UK
- Innovation and cost reductions
- Integrating policies
- Some international implications

A sense of direction

Need to steer not marginal+ but structural and systemic change

"No wind is favourable to those who don't know where they are going"

In UK – once an 'island of coal in a sea of oil and gas' - orientation set by Climate Change Act, with statutory 80%-below-1990 mid-Century

Reductions to the mid 2000s largely comprised reductions in industry, power (1990s "dash-for-gas") and waste – mostly driven by other trends & policies

Source: DECC (2016) *Provisional GHG statistics for 2015*; DECC (2016) *Final GHG statistics for 1990-2014*; CCC analysis.

UK Pillar 1: Energy Efficiency

Labelling and standards
 (mostly driven from EU):
 effective in appliances,
 significant in buildings but implementation challenges major improvements in vehicles

- **Supplier obligations** ("white certificates") delivered 1-2% reductions in electricity & gas demand, 2008-13, from domestics pressure to switch focus from 'cheap' to 'deep' to 'vulnerable'
- Substantial impact (but also much controversy) over 'CRC' buy-andtrade for less energy intensive business (retail, etc)
- Much-hyped 'Green Deal' loans for energy efficiency tied to
- properties an unmitigated embarrassment

UK Pillar II in power sector: trends...

Electricity supplied by major UK generators by fuel, 1990-2014

Figure 1 The dash for gas the decline of coal, a competitive market & Elec Market Reform Source (data): Digest of UK Energy Statistics, various years

UK Pillar II in power sector: EMR

UK approach: four pillars of Energy Market Reform

Major changes to UK electricity market, implemented during 2011-15

CfDs to lower the cost of capital

Contracts for Difference (CfDs)

- Energy price topped up (or reimbursed) to a "strike price"
- Initial contracts awarded by government; moving to
- Competitive auction held by National Grid, sophisticated design

Yielding big cost savings

... when combined with competitive auctions

- Administered prices, May 2014 followed by competitive auction, Jan 2015
- Over £315m/yr new contracts offered to five renewable technology classes
- Over 2GW of new capacity with saving £110m/yr cf administered price in 2014
- Estimate cost of capital reduction by 3 percentage points saving £bns.

	Capacity	Admin Strike price 2014 (£/MWh)	Lowest auction clearing price Jan 2015	Maximum % saving
Solar PV	72	120	79	34%
Onshore Wind	1162	95	79	17%
Energy from Waste CHP	95	80	80	0%
Offshore Wind	750	140	114	18%
Advanced Conversion Technologies	62	140	114	18%

- Other European auctions in 2016 with further cost reductions
- Next UK auction announced, expected even offshore wind << £100/MWh
- Now well within the 'BNC' range of affordability, if & as system evolves

+ Carbon floor price impacts coal

Dramatic (80%) fall since 2012: first hours without coal power for over a Century Driven as declining gas price meets rising carbon price, and renewables Falls 2012-15 offset by rising renewables; increased gas in 2016

Varied progress across EU

10% fall in EU coal generation in 2016

- German renewables + gas
- Netherlands coal plant retirements
- Spain & Portugal return to normal
- UK €30/t carbon price (+renewables)

Target consistent carbon values

- Scenarios include measures available at lower cost than Government carbon values
- And reflect need to ensure that measures required to meet 2050 target are available to be deployed when needed

Delivering the Energy Transition

In theory and practice ...

Michael Grubb

Prof. International Energy and Climate Change Policy, UCL

Chair, UK government Panel of Technical Experts on Energy Market Reform Editor-in-Chief, Climate Policy journal

Australia National University 6 December 2016

- Broadening our economic frameworks
- Emerging transition in practice UK
- Innovation and cost reductions
- Integrating policies
- Some international implications

We are seeking radical innovation in some of the least innovative sectors of our economies

Fig.9.7

Fig. 9.3 R&D expenditure by top companies in different sectors as % of sales, 2011

The 'technology valley of death' caused by

high up-front innovation costs & long lead times => large risks weak demand-pull and large market risks in innovating for policy-dependent value

Mix of strategic investments in both technology push and demand pull needed to overcome numerous obstacles

\$2.0/watt

1.6 1.4

1.2

1.0

0.8

0.6 0.4 0.2

Jan

2010

2011

Driven mainly by public policy, big reductions in PV and battery costs

Cost for lithium-ion battery packs

\$1,200 per kilowatt hour

1.000

Prices trends of the big renewables, sharp declines

but also show the centrality of policy risk

Recent trends in international costs and contracted prices for wind and solar (source: UCL Submission)

A transition at all scales...

Distributed Service Providers

Combined with

Big generation developments, such as Dogger Bank

TenneT CEO Mel Kroon commented: 'In Germany and more recently in the Netherlands, TenneT has the role of developer and operator of the offshore grid. From this responsibility we have taken the initiative to establish a realistic and achievable plan for further development of the North Sea. The success of the energy transition depends largely on the extent to which we mount a coordinated joint effort in Europe. Cooperation between national governments, regulators, the offshore wind industry, national grid administrators and nature and environmental organisations is a precondition for achieving Europe's environmental targets. The vision we have presented shows the relevance of cooperation in the North Sea.'

North Sea Infrastructure: the vision

Solar and wind energy will be necessary on a large scale because attainment of Europe's targets for reducing CO₂ emissions depends largely on the production of renewable electricity. Moreover, wind and solar energy are

Source: TenneT

Transition needs to extend into other sectors and more integrated systems

Delivering the Energy Transition

In theory and practice ...

Michael Grubb

Prof. International Energy and Climate Change Policy, UCL

Chair, UK government Panel of Technical Experts on Energy Market Reform Editor-in-Chief, Climate Policy journal

Australia National University 6 December 2016

- Broadening our economic frameworks
- Emerging transition in practice UK
- Innovation and cost reductions
- Integrating policies
- Some international implications

Markets and prices as part of the package

Need to integrate across all three pillars:

- Enhanced efficiency
- Cleaner products
- Innovation and infrastructure

And harness this for *social* and industrial strategy

- Lower resource costs
- Consider carbon pricing including materials
 consumption & low-C materials
- Accelerate innovation for competitiveness

The 'narrative' around carbon pricing ...

Must change!

- Not an abstract (externality pricing) but an instrumental rationale
 - Investment as well as operational incentive
 - A source of funding for energy efficiency and innovation programmes
 - A political narrative based around stability of energy expenditure
- Key design elements for market carbon pricing
 - A price corridor on emissions trading
 - Linked with technology strategy
 - Energy-intensive industry, carbon leakage concerns potentially addressed through trade linkages and/or carbon pricing on material consumption
 - 'carbon leakage' increasingly offset by 'clean technology diffusion'
- More tools in the toobox, including carbon-backed contracts, reference and internal carbon pricing

With a basis in international strategy / coalition implementation of PA

- A coalition of countries strengthening their NDC commitment in 2020?
- Coordination of price, technology investment and trade approaches?

A **rising base** carbon reduction value *could* contribute *across* Domains:

- 1. Attention effects and funding
- rising steadily enables efficiency to keep pace and stop much rise in total bills
- efficiency programmes may counter regressive concerns?
- 2. Rising price differential
- steadily reduce use of coal in power generation without huge asset stranding
- help to move renewables over time from transitional subsidies into mainstream market
- 3. Long term visibility and leverage
- increased investment stability
- time and leveraged funding for innovation, infrastructure and tech transfer programmes

.. To help drive the risk transition from clean on to dirty fuels

Some conclusions

- 21st Century energy systems will be radically different from 20th Century
- Understanding transition on this scale means broadening economic horizons to all three domains and associated pillars of policy
- Transition is already under way, so far driven far more by the non-pure-market policies
- Aggregate cost impacts (eg. Germany) pushed to the limit of this approach, but resulting technology cost reductions place the transition within reach of global development and more balanced policy packages
- Clear policy direction can shift risk and lower finance costs
- ... including new roles and narrative for carbon pricing

Planetary Economics:

- 1. Introduction: Trapped?
- 2. The Three Domains
- Standards and engagement for smarter choice
- 3: Energy and Emissions Technologies and Systems
- 4: Why so wasteful?

Pillar 1

Pillar II

Pillar III

- 5: Tried and Tested Four Decades of Energy Efficiency Policy
- Markets and pricing for cleaner products and processes
- 6: Pricing Pollution of Truth and Taxes
- 7: Cap-and-trade & offsets: from idea to practice
- 8: Who's hit? Handling the distributional impacts of carbon pricing
- Investment and incentives for innovation and infrastructure
- 9: Pushing further, pulling deeper
- 10: Transforming systems
- 11: The dark matter of economic growth

12. Conclusions: Changing Course

Published Routledge 2014

6-page 'Highlights' paper available

