Crawford School of Economics and Government

The Australian National University, 27th October

Rationing and Length: The impact of water supply interruptions on residential users

María A. García-Valiñas

Toulouse School of Economics, INRA-LERNA

David Roibás

University of Oviedo

OUTLINE

- 1. Aims and motivation
- 2. Drought in Seville
- 3. Methodology
- 4. Empirical analysis
 - (I) Residential water demand function
 - (II) Welfare and rationing
- 5. Concluding remarks

1. Aims and motivation 2. Drought in Seville 3. Methodology 4. Empirical analysis 5. Concluding remarks

AIMS AND MOTIVATION

Aims:

- Which interruption length is preferred: short or long?
- Comparing several rationing methods applied during drought periods (welfare analysis):
 - Water supply interruptions
 - Water price increases

Motivation:

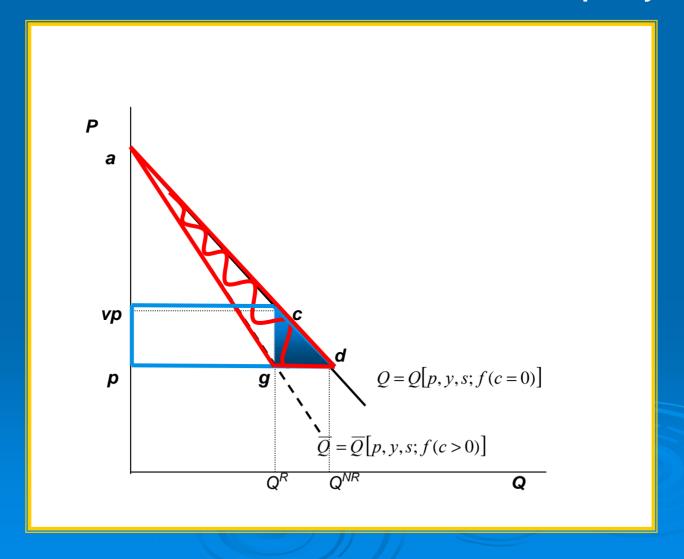
- Residential water use:
 - Usually, the main urban water use
 - Urban users as a priority
- Improvement of previous methodologies
- Management of urban water demands
- Water resource value (EWF)

Aims and motivation 2. Drought in Seville 3. Methodology 4. Empirical analysis 5. Concluding remarks

DROUGHT IN SEVILLE

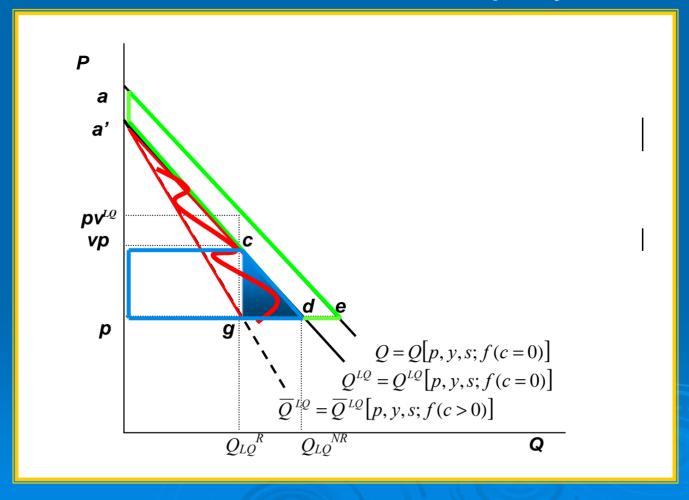
- Analyzed drought period : 1992-1996.
- Water firm (EMASESA) initiatives:
 - Demand
 - ✓ Information campaignes
 - ✓ Rationing:
 - Water supply interruption (up to 12 hours per day)
 - Supply
 - √ Firm reorganization
 - ✓ New supply sources
- During drought, we observe a significant reduction of water resource quality

METHODOLOGY


Demand function with two components:

$$Q = Q[p,y,s;f(c,y)] = q(p,y,s) \cdot f(c,y)$$

- Welfare measurement: surplus (inconsistency using compensated variation: Roibas et al. 2007)
 - Supply interruption:
 - Proportional rationing assumption (Tirole, 1990)
 - Prices:
 - Efficient rationing assumption
 - Virtual prices (Tobin y Houthakker, 1951)


METHODOLOGY

Scenario 1: "Good" water resource/service quality

METHODOLOGY

Scenario 2: "Bad" water resource quality

$$Q_{it} = \left[\beta_{0} + \beta_{1} p_{it-2} + \beta_{2} y_{i} + \beta_{3} temp_{t} + \beta_{4} nper_{i} + \beta_{5} qual_{t}\right]$$

$$\left[1 + d_{h} \left(\alpha_{0} + \alpha_{1} c_{t}^{s} + \alpha_{2} c_{t}^{l} + \alpha_{3} y_{i}\right)\right]$$

DEPENDENT	<i>O_{it}</i> : household water consumption
VARIABLE	

INDFPFNDFNT **VARIABLES**

PRICF P_{tt-2} : two-lagged average price

INTERRUPTION c^s_t : Total hours of interruption, when (marginal) cuts are equal or lower than **VARIABLES** 6 hours per day ("short cut")

 c_t : Total hours of interruption, when (marginal) cuts are higher than 6 hours

per quarter

per day ("long cut")

QUALITY $qual_t$: dummy: 1= low quality; 0=otherwise

SOCIOECONOMIC *y;*: income index **VARIABLES** *nperi*: number of people per household

CLIMATIC VARIABLES *temp_t*: average of maximun temperatures

- Panel data:
 - □ 208 Sevillian households (individual metering)
 - □ Period: 1991(4)-2000(3)

Variable	Units	Mean	Stan. Dev.	Max.	Min.
$\boldsymbol{\varrho}$	m^3	108.69	150.48	527.84	1.90
p	Euros/m³	1.43	0.37	2.22	0.85
y	Euros/household	2,426.73	471.06	3,693.25	1,652.24
temp	Celsius Degrees	25.54	5.32	32.6	18.1
n	Persons/House	3.78	2.11	11.00	1.00
c^{day}	Hours: Minutes	4:50	2:03	7:00	0:40

Residential water demand function: results

Parameter	Coeficient			
α_0	-0.323075 ***			
$\alpha_I(c^s)$	-0.000350 ***			
$lpha_2(c^l)$	-0.000170 ***			
$\alpha_3(y)$	0.000085 ***			
$oldsymbol{eta}_0$	-103.0780 ***			
$\beta_{I}\left(p ight)$	-31.5009 ***			
$\beta_2(y)$	0.0033			
β_3 (temp)	0.8969 ***			
eta_4 (nper)	62.7401 ***			
$eta_{\it 5}$ (qual)	-22.7933 ***			
R^2	0.6921			

Welfare and rationing

	QUAL=0		QUAL=1		
	$c^{s(=223)}$	$c^{1(=545)}$	$c^{s(223)}$	c ^{l=(545)}	
Q^{NR}	120.0	02	97.2	3	
↓Q	-23.28	-25.00	-18.86	-20.25	
р	1.4.	3	1.43	3	
vp	2.17	2.23	2.03	2.07	
vp ^q			2.75	2.80	
$\downarrow W^c$	44.34	47.62	29.10	31.25	
$\downarrow W^{ ho}$	8.60	9.92	5.64	6.51	
$\downarrow W^{LQ}$			78.6	0	
					_

1. Aims and motivation 2. Drought in Seville 3. Methodology 4. Empirical analysis 5. Concluding remarks

CONCLUDING REMARKS

- Methodological contribution:
 - Residential demand function
 - Analyzing several rationing systems
 - Virtual prices: information about willigness to pay for water without restrictions.
- Short interruptions more efective/efficient than long interruptions:
 - Short interruptions are preferred to achieve the targeted reduction in consumption, minimizing the total time of interruption.
 - Useful information to design water policies during drought periods.

Thank you for your attention

