Resource allocation for efficient environmental management

Cindy Hauser Michael McCarthy

acera

Australian Centre of Excellence for Risk Analysis

THE UNIVERSITY OF

MELBOURNE

Nick Williams Amy Hahs Yung En Chee Jenny Bear Georgia Garrard Marius Gilbert Thanawat Tiensin Colin Thompson Mark Burgman Hugh Possingham Melinda Moir

Biosecurity surveillance

- Making the most of surveillance
- Economic framework, room for ecological knowledge
- Explicitly link surveillance effort and accuracy to costs, decisions and outcomes
- Model imperfect detectability
- Surveillance for a pest or disease where and how hard should we look?

Spatial variation

- We usually have a heterogeneous landscape
- Varying...
 - probability of pest presence
 - ability to detect the pest
 - ability to control the pest
 - value of pest freedom
- How should we allocate surveillance over space?

Hauser C.E. & McCarthy M.A. 2009. Streamlining 'search and destroy': cost effective surveillance for invasive species management. Ecology Letters 12: 683—692.

Surveillance impact

Expected costs of undetected pests

 $L(\mathbf{x}) = \sum_{i=1}^{n} p_i \left[1 - d_i \left(x_i \right) \right] R_i$ probability that
pest is present
at location *i*probability of failing
to detect the pest
using effort *x_i*consequences of
detection failure
at location *i*

Surveillance impact

Expected impact of undetected pests

$$L(\mathbf{x}) = \sum_{i=1}^{n} p_i \left[1 - d_i \left(x_i \right) \right] R_i$$

- **1. Cost-benefit.** Trade impact of undetected pests against cost of surveillance, $\sum_{i=1}^{n} x_i$
- **2. Cost-effectiveness.** Minimise impact of undetected pests subject to surveillance budget $\sum_{i=1}^{n} x_i = B$

The optimal allocation

- We can prioritise sites using a score, $p_i \lambda_i R_i$
- That is, we target sites where:
 - the pest is most likely to be
 - the surveillance method is most effective
 - successful detection is of most benefit (high value of pest freedom, control is cost-effective)
- The solution also tells us *when to stop* searching a site and move down the priority list...

probability pest is present

benefit of detection

surveillance efficiency

optimal surveillance effort

Orange hawkweed on the Bogong High Plains, Victoria

Williams N.S.G., Hahs A.K. & Morgan J.W. 2008. A dispersal-constrained habitat suitability model for predicting invasion of alpine vegetation. Ecological Applications 18:347—359.

Pest detection

surveillance effort x_i

Hawkweed detection

Moore, J., McCarthy, M.A., Hauser, C.E., Bear, J. & Williams, N.S.G. (in prep)

Gilbert et al. (2008) Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia. Proc. Natl. Acad. Sci. USA *105, 4769-4774*

McCarthy, M.A., Thompson, C.J., Hauser, C.E., Burgman, M.A., Possingham, H.P., Moir, M.L., Tiensin, T., Gilbert, M. (in review)

Conclusions

- Economic framework accommodating ecological knowledge
- We prioritise options with high impact, high probability of pest presence, high detectability
- Application in portfolio theory, prioritising biodiversity hotspots, choosing amongst survey methods, greenhouse gas mitigation, vegetation management, project prioritisation
- Methods exist for estimating detectability
- Parameter uncertainty leads to diversification of resources

 $p_i R_i$ is the expected impact of failing to detect the pest at location *i*

 $1/\lambda_i$ is the average cost of detecting the pest if it's present at location *i*

2.Planning with a budget

$$x_{i}^{*} = \begin{cases} \frac{\ln\left[p_{i}\lambda_{i}R_{i}\right]}{\lambda_{i}} + \frac{\overline{\lambda}(k)}{\lambda_{i}}\left[\frac{B}{k} - \overline{x}(k)\right], & i = 1, \dots, k\\ 0, & i = k+1, \dots, n \end{cases}$$

where

$$\overline{x}(k) = \frac{1}{k} \sum_{i=1}^{k} \frac{\ln\left[p_i \lambda_i R_i\right]}{\lambda_i}$$
$$\overline{\lambda}(k) = \frac{k}{\sum_{i=1}^{k} \lambda_i^{-1}}$$

mean allocation to each location, without a budget

mean surveillance efficacy across landscape

Optimal surveillance with a budget

Optimal surveillance with a budget

$$x_{i}^{*} = \begin{cases} \frac{\ln\left[p_{i}\lambda_{i}R_{i}\right]}{\lambda_{i}} + \frac{\overline{\lambda}(k)}{\lambda_{i}} \left[\frac{B}{k} - \overline{x}(k)\right], & i = 1, ..., k\\ 0, & i = k + 1, ..., n \end{cases}$$

difference between what we want to spend and what we have to spend on each site

Optimal surveillance with a budget

Orange hawkweed example 450 450 100K Visit length (minutes) shrubby low grassy Visit length (minutes) 400 400 70K 350 350 B* ~ 44K 300 300 250 250 100K 20K 70K 200 200 B* ~ 44K 150 150 10K 20K 5K 100 100 10K 50 5K 50 0 0 0.02 0.03 0.04 0.00 0.01 0.05 0.01 0.02 0.03 0.04 0.00 0.05 Probability of occurrence p i Probability of occurrence p i

Expected number of sites with undetected hawkweed

