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Some important questions

• Eradicate, contain or do nothing?

• When to stop searching? 

• Rapid delimitation of invasions.

• Allocation of search and control resources.

• Tradeoffs between preparedness (pre-discovery) and 
response (post-discovery).

• Design of efficient search strategies.



Tools and approaches

Analytical mathematical models
Simple numerical models  (examples 1 & 2)
Detailed simulation models (example 3)

Derive rules of 
thumb

Produce tailored models for 
expensive invasions 
(evolves as program progresses)

our 
focus



• Essential features of biological invasions.

• Bioeconomic modelling examples: 

• 1: eradicate, contain or do nothing?

• 2: search theory and population dynamics;

• 3: spatially-explicit approaches.

• An application to RIFA. 

• Concluding comments.

Outline



Essential information to describe a 
biological invader 

• rates of spread and growth; 

• habitat suitability; 

• vulnerability to control techniques; 

• severity of damages caused. 



Essential information to describe a  
control program 

• the types and amounts of resources 
available;

• the effectiveness and costs of surveillance 
and control options; 

• constraints imposed by legislation and the 
environment.



Example 1: 
eradicate, contain or do nothing?

State-based approach: optimal action depends on state of 
the system (stochastic dynamic programming)

Subject to: 

Minimise: 

Total cost of the invasion 
(present value)

• rate of spread of the invasion

• effectiveness of control options

Damage cost
Control cost



The model

state transition control  cost damage
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Optimal state transition
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Damage Control cost ($/ha)
($/ha) 160 180 200 220 240

5 0 0 0 0 0
7.5 57 44 0 0 0
10 83 71 61 54 44
15 100 100 100 92 83
20 100 100 100 100 100

never

eradicate?

always

depends

Optimal decision rule



Example 2:
search theory and population dynamics

• find and treat all plants;

• kill plants before they set seed.

• detectability of the plant;

• search effort;

• environment;

• logistic factors (speed, accessibility).

To eliminate a weed invasion we need to:

Probability of detection depends on :



The model

• Search  theory: relates surveillance effort 
to probability of detection.  

• Matrix model: captures life stages and 
population dynamics. 

• Considers plant features:
• seed longevity;
• plant longevity;
• time to maturity;
• fecundity.

• Considers costs of labour and chemicals. 

Oscar Cacho, Susan Hester, Daniel Spring, Paul Pheloung 
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Minimising eradication cost
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Should we attempt early eradication?
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• Detectability of the invader

• Logistic factors (search effort, speed and pattern)

• Population dynamics (dispersal, growth)

• Environmental factors (habitat suitability)

• Geographical factors (urban/rural, private/public)

• Passive surveillance

• Active search 

Example 3:
A spatial model

Features:
Oscar Cacho, Susan Hester, Daniel Spring 



Dispersal kernel and adjacency matrix
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Habitat suitability

H=0.2 H=0.8
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fractal worlds can be created or actual 
maps can be used when available



Probability maps (pest presence)
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Search and treatment
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repeat search

treated

passive detection
active search
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Eradication probability and cost
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Eradication-probability frontier
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Monetary effects of parameter changes
Based on elasticity estimates derived from the model

 
Parameter Parameter 

change 

Cost of 
change 

($) 
Propagule pressure (w) from 100 to 101 60,157 

Detectability (λ) from 5m to 6m -710,180 

Treatment effectiveness (pk) 98% to 99% -60,530 

Prob. of long distance jump (pL) from 2% to 3% 538,688 

Time to discovery (tD) from 5y to 6y 927,955 
 



An application: fire ants
Daniel Spring, Oscar Cacho, Daniel Schmidt



Background

• Number of nests removed has declined from 
>65,000 to 90 known infested properties.

• Most detections resulted from accidental encounters with 
private citizens rather than active searching.

• April-June 2008 bounty scheme ($500 reward) for reports 
by private citizens of new infestations; public reports 
increased 940% compared to previous year.

• About 2/3 of suspect ant locations have been on the 
reporting person’s residence; the majority of the 
remainder have been on public land.



Source: BQCC



The model

• The map is a 707×935 ha grid.

• Growth and spread equations were estimated from 7 
years of GIS data collected by BQCC.

• The ‘Government’ generates probability map based on 
known colonies.

• The model generates probability map based on all 
colonies (drives spread of invasion).

• Search is based on BQCC protocols supplemented by 
probability map.



habitat suitabililty
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search effort
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The model does not predict the location of invasions, 
it estimates where invasions are more likely to occur

3.6 invasions within 1 km of edge 13.7 invasions within 1 km of edge
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We should be able to improve on this as we find more 
effective search and treatment strategies and apply new 
techniques (dogs, better traps, new chemicals)



Concluding comments
• Biological invasions are complex dynamic systems 

but they have common features that make them 
amenable to modelling.

• Models integrate information on economics, biology, 
logistic factors and the search environment.

• Bioeconomic models can contribute significantly to 
planning, evaluation and execution of control 
programs.

• A broad range of problems can be tackled through 
bioeconomic modelling. 
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