Biodiversity valuation for biosecurity decisions when time is acutely constrained and uncertainty abounds

Brian Bell Nimmo-Bell & Company Ltd

Foundation for Research Science & Technology

Nimmo-Bell & COMPANY LTD

Outline

The problem
Approach
Choice modelling
Benefit transfer
Risk simulation
Discussion and conclusions

The problem

MAF BNZ allocating resources to response

- Investigation
- Cost Benefit Analysis
- Pest management & other issues
- TEV & Market v Non-Market benefits
- Focus on biodiversity values
- Integrate with existing systems
- In-house analysis Manual

The problem

MAF BNZ allocating to response - Investigation - Cost Benefit Analysis TEV & Market v Non-Market benefits Focus on biodiversity values Integrate with existing systems In-house analysis - Manual

Approach

- Survey literature: biosecurity & biodiversity
- Systematic database
- Choice modelling
 - Case studies
 - Biodiversity Valuation Database
- Benefit transfer
- Risk simulation
- Manual for MAF BNZ

Choice modelling case studies

Diverse ecosystems selected

- Coastal marine:
- SI high country:
- Freshwater:
- Beech forest:

European shore crab Wilding pine Hydrilla European wasp

Coastal Marine – crabs

S.I. high country - wildings

Beech forest - wasps

Freshwater - hydrilla

Choice modelling case studies

Common methodology

- Science
- Focus groups
- Convenience sample priors
- Bayesian efficient design
- Hybrid meetings for data collection
- Random Parameters Logit (RPL) model
 - Panel version
 - Biodiversity(t,1), price fixed

Presentation of CM results

- Next 3 slides
 - Four case studies, 36 attributes
 - Comparison of values between and within studies
 - Distance decay
- Environmental attributes
 - Mean, variance, correlation

WTP Comparison (95% confidence)

WTP comparisons - significant differences

Nimmo-Bell & COMPANY LTD Freshwater WTP by location

Nimmo-Bell & COMPANY LTD

Using the results

Systematic database of biodiversity values

- Means, SD, correlation coefficients
- Bands
 - Extinct v local loss
- Socio-economic characteristics e.g.
 - Income
 - Membership of conservation group
- Univariate benefit transfer
- CBA with Risk Simulation

Benefit transfer adjustments

Biodiversity Valuation Database (Univariate)

- Plus EVRI & Lincoln Non-Mkt Valn Database
- Inflation, PPP
- Scale and scope
 - Distance decay mental account
 - Procedural invariance
- Aggregation
 - SDCs
 - Income
 - Conservation orientation
- Uncertainty
 - Mean, SD, correlation
 - Risk simulation using QuRATM

Using the database for decision making

- Decision Support System
 - Investigation
 - CBA
 - Pest Management
 - Other resource allocation issues

Summary and conclusions

Achievements

- Efficient choice modelling practice
- Effective database construction
- Effective decision making using tools developed
- Next steps
 - Choice modelling
 - Database development
 - Enhancing decision making

