Stern, Climate Policy and Saving Rates

Kathryn Smith
Economic Analysis Team
Department of Climate Change

Crawford School Seminar
The Australian National University
2 December 2009

Thanks and Disclaimer

- Many people and institutions to thank including Simon Dietz, Frank Jotzo, Jack Pezzey, DCC and EERH at ANU
- Presentation represents my professional opinions and views expressed should not be attributed to the Department of Climate Change or the Australian Government

Outline

- 1. Stern's parameters
- 2. Saving rates associated with Stern's parameters in theory
- 3. Comparing Stern's and key critic Nordhaus's saving rates in a calibrated model (DICE)

The Stern Review

- Policy prescription: strong and early action
- Methodology: mixed
 - Includes aggregated economic modelling
- Forming policy requires judgements about importance of future welfare
- Judgements embodied in model parameters

Two Ways to Disagree with Stern's Parameter Values

1. The choice of parameter values

Two Ways to Disagree with Stern's Parameter Values

- 1. The choice of parameter values
- The method for choosing the parameter values

The resulting saving rates are patently absurd!

Dasgupta

The resulting saving rates are patently absurd!

Dasgupta

Weitzman

Yep. But I think Stern is right for the wrong reasons,

The resulting saving rates are patently absurd!

Dasgupta

Weitzman

Yep.
But I think
Stern is
right for the
wrong
reasons.

I think Stern is just wrong.

Nordhaus

Outline

1. Stern's parameters

- 2. Saving rates associated with Stern's parameters in theory
- 3. Comparing Stern's and key critic Nordhaus's saving rates in a calibrated model (DICE)

- Basis of micro-founded climate policy models
- Specific case: iso-elastic utility and Cobb-Douglas production:

$$Y(t) = A(t)K(t)^{\alpha}L(t)^{1-\alpha}$$

- Basis of micro-founded climate policy models
- Specific case: iso-elastic utility and Cobb-Douglas production:

$$Y(t) = A(t)K(t)^{\alpha}L(t)^{1-\alpha}$$

 Question: what can we say about saving rates?

- Fact 1: steady-state saving is bounded above by the capital share of output regardless of pure time preference
- Fact 2: transitional saving rate is monotonic

- Fact 1: steady-state saving is bounded above by the capital share of output regardless of pure time preference
- Fact 2: transitional saving rate is monotonic

- So: for Stern's parameter choices:
 - saving rates will approach a steady-state level of less than 30% from above.

What's Absurd About That?

- How to reconcile with Dasgupta's 97.5%?
 - comes from swapping C-D with AK production and removing TFP growth
- In this case

$$s^* = \frac{r - \rho}{\eta r}$$

- For r = 4%, Stern's parameters yield
 s* = 97.5%
- Plausibility of underlying assumptions?

Outline

- 1. Stern's parameters
- 2. Saving rates associated with Stern's parameters in theory
- 3. Comparing Stern's and key critic Nordhaus's saving rates in a calibrated model (DICE)

Ramsey and the Climate: DICE

- Sophisticated micro-founded IAM
- Links Ramsey growth model with General Climate Model
- Key differences from standard Ramsey:
 - Finite horizon: complete dissaving
 - Production externality

Are Stern's Rates 'Reasonable'?

- Run DICE with Stern's parameter choices
- Examine saving rates
- Compare with those resulting from Nordhaus's parameters

Saving Rates in DICE07 Different rates of pure time preference and eta

Notes: s1: saving rate from DICE07 base run; s2: saving rate in base run with Stern 'hindsight' utility function parameters; s3: saving rate in base run with utility function parameters as in the *Stern Review*.

Source: author's results from DICE07

thinkchange www.climatechange.gov.au

Another Way to Show Reasonableness

- Look at effect of Stern's saving rates on capital accumulation and optimal rate of emissions control
 - exploits ability to switch off optimal savings in DICE

Comparison

- Compare emissions control rate under:
 - Nordhaus default parameters and optimal saving rate
 - Nordhaus default parameters and fixed saving rate
 - Stern 'hindsight' parameters same fixed saving rate
 - 4. Stern 'hindsight' parameters and optimal saving rate

Comparison (cont.)

Scenarios

- Nordhaus default parameters and optimal saving rate
- Nordhaus default parameters and fixed saving rate
- 3. Stern 'hindsight' parameters same fixed saving rate
- 4. Stern 'hindsight' parameters and optimal saving rate

Rationale

- Choice of fixed saving rate in (2) to match optimal rate in (1) means that
 - shift from Nordhaus to
 Stern (1 to 4) can be
 approx. decomposed into
 shift from (1 or 2) to (3) (the
 'welfare effect') and (3) to
 (4) (the 'capital effect')
- Hypothesis: capital effect is small as saving rate differences shown to be small

Optimal Emissions Control Rates in DICE07 Different utility function parameters and saving rates

Source: author's results from DICE07

Are Stern's Rates 'Reasonable'?

- Broadly yes
- Certainly not 97.5 per cent
- Maximum difference with Nordhaus is 4.5 percentage points.

In Conclusion

- Clarified the conditions under which 'high saving rates' can be used as a criticism of Stern's utility function parameters
- Future work: many ways of 'extending' or altering DICE; key is prioritising areas of most value

Thank you!

