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1. Introduction 
 
The intertemporal composition of national energy mixes tends to exhibit specific patterns 
and dynamics over time and along the income spectrum (Burke, 2010 & 2013). While 
countries generally transition towards higher-quality energy carriers over time (Csereklyei 
et al. 2016), the pace of this process is varying due to path dependencies caused by 
infrastructure, labor and capital lock-in (Sovacool, 2016), by prevailing perceptions (Lee 
and Gloaguen, 2015), policy inertia (Pierson, 2000), and by the abundance of indigenous 
resources (Burke, 2013). Whether and to what degree countries rely on diversified energy 
carriers (IEA, 2014a), and specifically depend on external resources (Jewell, 2011) during 
this transition, greatly influence their consecutive national (energy) security strategy 
(Cherp and Jewell, 2014). We argue that model-based cluster-analysis could provide 
completely new insights into this process. Specifically, we propose to cluster country-year 
energy profiles of the European Union over 1971-2010 in order to identify typical 
compositions and their behavior. The detected country profiles are investigated with 
regard to the changes they exhibit internally, and are used to test existing theories about 
the presence of an economy-wide energy ladder, energy intensity convergence and 
endowment lock-in effects. 
 
The energy profile of a country is generally captured by the notion of the energy mix. 
This may refer to various underlying concepts: the contribution of different energy 
carriers to electricity generation (called the electricity mix), to primary energy 
consumption, or to primary energy production. Primary energy production tends to be 
dominated by indigenous energy carriers, while consumption often includes imports of 
non-indigenous resources.1 To gain however a full picture of a country’s energy profile 
including its long-term energy security implications (IEA, 2014a), in this study we 
investigate the composition of the primary consumption2.  
 
The composition of national energy mixes may remain stable or exhibit systematic 
changes over time. We will call this behavior an energy path. The term path already 
suggests the possible presence of path dependencies (for the social sciences see: Pierson 
(2000), for technological development see Araujo and Harrison (2010), Araujo (2014), 
and Sovacool, (2016)), meaning that countries having trodden some path are facing 
substantial costs in changing to a significantly different composition. Important voluntary 
changes in the energy mix imply considerable financial costs, and may be so pronounced 
that we observe inertia and stable compositions over comparatively long periods such as 
in the cases of Malta, Cyprus or Poland.3  
 
Changes in the energy mix may be driven by natural market forces, such as the supply 
cost of competing resources on one hand (Chabrol, 2016), or by political decisions 
including subsidies or government ownership (German Energiewende, France’s 
deployment of nuclear power in the 1970s) on the other hand. Accordingly, these changes 
                                                        
1 The extent to which energy import dependent countries’ energy consumption mix differs from their production mix 
depends on many factors, including national income, geography, existing infrastructure, and other market factors.  
2 Primary energy consumption is defined in our study as the IEA (2014)’s TPES measurement, calculated as indigenous 
production + imports – exports – international marine bunkers – international aviation bunkers +/- stock changes.  
3 While most countries take advantage of biomass and conventional fossil fuels, the deployment of geothermal energy, 
solar & wind or nuclear energy is still limited. On the other hand the extent to which certain energy forms are deployed, 
may also vary considerably. France for example covered 42% of its primary energy consumption from nuclear energy in 
2010, while Malta used oil to meet 99% of its energy demand. Poland relies heavily on its indigenous coal, while 
Norway is a leading country in exporting North Sea Oil, yet has at the same time abundant hydro-reserves.  Obviously, 
any energy mix will be influenced by both domestic endowments and external supply availability.  
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may take place slowly as countries become richer (Tahvonen and Salo, 2011; Burke, 
2013), or policies may cause abrupt modifications in the energy mix, such as the German 
phase-out of 8GW of nuclear power in 2011. Such changes may lead to a relatively 
sudden substitution by new energy carriers, or to a gradual substitution by one, few or 
many other energy carriers, allowing for differential strategic diversification. 
 
The growing importance of national energy security4, including energy supply and 
consumption diversification, in the face of potential supply disruptions since the first oil 
crisis (Yergin, 2006), coupled with the desire for cleaner, more efficient and safer energy 
forms (Burke, 2013) may also drive such transitions and increase the share of certain 
energy forms in the mix. Currently, EU member states intensify their quest to contribute 
to environmental protection, climate change mitigation and energy supply security 
simultaneously, even though Stramboa et al. (2015) note that there are as many 
inconsistencies as there are synergies in these policies. If we would like to analyze the 
viability of these ambitious EU plans, it is necessary to generalize experiences about 
energy paths across both time and countries.5 
 
Therefore we investigate the patterns of energy mix changes and energy carrier transitions 
in the member states of the European Union between 1971 and 2010 using a model based 
clustering analysis of the European Union’s energy mix. The objects of our cluster 
modeling approach are not countries, but country-years. The novelty of the method, 
which--to the knowledge of the authors--has not been applied to the problem before 
allows us to identify distinctive energy profiles (represented by clusters) over time and 
across the EU, and to trace the dynamics of the movements (trajectories) of countries 
across these energy profiles, including the presence of possible path dependencies. We 
also examine whether the data structures discovered by a machine learning algorithm 
support existing theories of energy transitions and the energy-GDP relationship, or not.    
 
We find seven typical clusters based upon what combination of energy carriers dominate 
the primary energy mix of a country, which we rank from the highest fossil fuel clusters 
(meaning that the share of coal, oil and natural gas in energy consumption is the highest) 
towards the lowest fossil fuel clusters. We find that over the examined period and in the 
absence of path dependencies countries tend to take a trajectory towards higher quality 
energy profiles. We also find that higher-quality energy mixes are associated with higher 
national income per capita and energy use per capita, supporting some evidence on the 
existence of a national-level energy ladder. We observe beta convergence in energy 
intensity, and clear path dependencies caused by high indigenous resource endowments. 
 
This paper is structured as follows: Section 2 introduces the current literature, in section 3 
we introduce our data, hypotheses and the underlying methodology of model based 

                                                        
4 Already at the beginning of the 20th century, Winston Churchill claimed that “safety and certainty in oil lie in variety 
and variety alone" (Yergin, 2006). The diversification of the energy mix, and the reduction of energy import 
dependency (especially from a single supplier) has been an important political goal in the European Union. 
Diversification as a strategy can be applied to the entire energy portfolio—leading to decreased dependence on one 
specific form of energy, or to the choice of suppliers (Jewell, 2011). Jewell (2011) among others notes the importance of 
political stability in the supplying countries, and the sufficient number of entry points and suppliers. 
5 With its clear goals to enhance secure and sustainable energy systems, and to combat global climate change, the 
European Union’s 2030 Framework for climate and energy defined three major targets, including a 40% decrease in 
greenhouse gas emissions compared to the 1990 levels, a minimum of 27% share of renewables in energy use, and a 
30% increase in energy efficiency compared to business as usual. The European Commission estimates that the cost of 
meeting these long-term goals will not significantly differ from the costs that would be needed to replace older energy 
technologies at the end of their life-cycle (European Commission, 2014a). 
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clustering, in section 4 our results are presented, while section 5 concludes and presents 
our policy implications.  

2. Background and Theory  
 
What are typical energy paths and what determines the trajectories countries take as they 
develop? Is there an evidence of an energy ladder, defined as a gradual transition to higher 
quality fuels, as nations become richer? What steps do nations take to diversify their 
energy mixes? The answers to these questions are of crucial importance in determining 
the right policies to combat climate change and to enhance energy security. Besides the 
historical energy transitions referring to entire “eras” such as the “coal era” of the 19th 
century or the transition to crude oil at the beginning of the 20th century, the energy ladder 
concept allows us to investigate the short and mid-term dynamics and patterns of national 
energy mixes. 
 
The concept of a national energy ladder may be summarized as follows: low income, 
developing countries tend to rely heavily on biomass energy, including wood and charcoal 
for cooking (IEA, 2013; Burke and Dundas, 2015). As countries become richer, new 
technologies enter the market, and they substitute towards higher quality energy sources 
(Csereklyei et al., 2016). Based on empirical findings by Burke (2013), the ladder 
proceeds from biomass, hydro, oil, coal, natural gas, and nuclear energy to geothermal, 
waste and wind energy6. During this process, as energy consumption in total is growing, 
the absolute amount of fuel inputs may not decrease, only their share in the energy mix 
are changing (Csereklyei et al., 2016). Arising from this dynamics, Pearson and Fouquet 
(2012) note that even a major transition to low-carbon technologies might not warrant a 
reduction in world fossil consumption.  
 
Currently there are few empirical studies investigating the macro-level presence of an 
energy ladder. The most comprehensive study covering 134 countries between 1960 and 
2010 is that of Burke (2013), who finds empirical evidence for the presence of a 
“national-level energy ladder” with the increase of per capita GDP. While Csereklyei and 
Stern (2015) find the role of fossil fuel resources ceteris paribus significant in increasing 
energy per capita growth in a dataset covering 93 countries over 40 years, Burke (2013 & 
2010) notes the importance of national resource endowments in shaping the transitions on 
the energy ladder. Countries with large endowments are found less likely or slower to 
climb to the upper rungs of this ladder. Fossil-fuel rich counties are thus less likely to 
utilize nuclear power, and modern renewables (Burke, 2013).  Larger own indigenous 
resource endowments may also become the basis of an energy security strategy. Burke 
(2013)’s findings are also consistent with earlier evidence from Burke (2010)7 and 
Tahvonen and Salo (2001).  

The joint implications of these findings are not only that countries with own fossil fuel 
endowments have a higher than average increase in energy use, but also that they are less 

                                                        
6 Burke (2013) finds that parallel with economic development countries transition “from biomass towards commercial 
fossil fuels, and hydroelectricity. At higher income levels, countries increasingly adopt low-carbon energy sources such 
as nuclear power and certain modern renewables such as wind power.”(Burke 2013: p500) 
7 Burke (2010) provides on the one had empirical evidence for the presence of an “electricity ladder”, on the other hand 
presents a simple stylized model of income, resources and the electricity mix, providing an analytical framework to 
explain historical patterns.  
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likely to transit to cleaner energy forms. Nuclear energy and renewables, both requiring 
large capital investments and economies of scale are found at the upper part of the energy 
ladder (Burke, 2013). At the same time, the carbon emissions from these energy forms are 
already declining. The energy profile of a country therefore explains large variations in 
emissions among different countries (Marrero, 2010). Burke (2013) proposes three 
potential reasons for the presence of a national-level energy ladder. The first factor is the 
reliance on indigenous energy sources with diminishing returns, meaning that imported 
fuels are gradually becoming more cost-competitive as own natural resources are 
becoming increasingly scarce (Burke, 2013; Tahvonen and Salo, 2001). The second 
reason is found in the positive income elasticity for more efficient and clean energy forms 
as societies get richer, and lastly sectoral and structural changes may also contribute to the 
appearance of a national-level energy ladder, along with the shift from an industrial to a 
more service oriented economy (Judson et al., 1999). 
 
Taking a different approach, the concept of energy ladder has been studied more 
extensively from a micro-economic view on the household level (e.g. Hosier and Dowd, 
1987; Heltberg, 2004; Hosier, 2004; van der Kroon et al., 2013), and on the firm level 
(Bousquet and Ivaldi, 1988). Heltberg (2004) finds that growing incomes on a household 
level, together with the relative fuel prices are the determining factors for the speed with 
which households switch fuels and move up the electricity ladder. However, in their meta-
analysis, van der Kroon et al. (2013) cannot observe the energy ladder empirically. They 
claim a linear pattern of fuel displacement at higher income levels, and multiple fuel use 
representing an energy portfolio, which they call energy stacking behavior. The presence 
of this fuel stacking behavior in household energy transitions is also supported by Burke 
and Dundas (2015), who find evidence from a 175 country panel between 1990-2010 that 
female labor force participation is associated with the reduction of biomass use. At the 
same time increased income per capita seems to lead to an increased use of higher quality 
fuels, but it is not significantly associated with the reduction of biomass energy use. 
 
From the viewpoint of energy security, countries with indigenous resource endowments 
may choose to predominantly rely on these resources, and thus may get “locked in” at a 
lower part of the ladder. Such lock-in effects cause path dependencies. On the other hand, 
countries without the necessary fossil fuels to cover their energy demand may transition to 
renewable energies faster, as renewable energy sources – arising from their local nature, 
are inherently energy secure. Another aspect not covered by the concept of the energy 
ladder is the notion of infrastructural lock-in (Sovacool, 2016) relating to plant 
infrastructure, grid-topography, ports, pipelines and supply routes. Existing pipeline 
systems may increase the dependency on transported oil or gas, and the same grid-system 
that is perfect for nuclear energy is suboptimal for integrating renewables. In our study we 
will extend our analysis of the energy ladder and also examine the impact of natural 
resource endowments and infrastructure in causing path dependencies.   
 
Departing from the income driven concept of an energy ladder, energy transitions in a 
historical context may take a very long time, spanning decades or centuries (Gales et al., 
2007; Grübler et al., 1999; Fouquet and Pearson, 2012; Grübler, 2004; Grübler, 2012; 
Rubio and Folchi, 2012). Fouquet and Pearson (2012) define energy transition as “the 
switch from an economic system, dependent on one series of energy sources and 
technologies to another.” While the patterns and dynamics of energy transitions are well 
known, the speed and the timing of these can be very distinctive (Grübler, 2012). While it 
is usually accepted that energy transitions take a long time, Sovacool (2016) presents 
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some counterevidence both for end-use devices and for transitions in supply. One 
important stylized fact of energy transitions is the continuously increasing energy quality 
(Stern, 2010) and energy efficiency (Stern, 2012).8  
 
Past energy transitions were not only driven by technological change, but also by resource 
availability, energy demand, and most importantly government policies and institutions 
(Fouquet and Pearson, 2012; Gales et al., 2007). Further determinants include trade 
relations (Rubio and Folchi, 2012), the role of policy and of incumbent governments 
(Fouquet and Pearson, 2012). Fouquet and Pearson (2012) find that successful energy 
transitions in the past were characterized by lower costs for the new technology and the 
new energy source than for the previously dominant energy source. This implies that new 
sources only diffuse widely, when they become sufficiently cheap to compete on the 
market.  
 
Grübler et al. (1999) developed a long-term model of energy transitions based on 
technology saturation and energy technology choices. They find that the replacement of 
long-lived infrastructures went hand in hand with the replacement of energy forms, 
leading to a decarbonisation of the primary energy supply with about 0.3% per year.  
Their model is based on endogenous technical choices, and S-shaped  (logistic) diffusion 
patterns incorporating learning phenomena on a macro-scale. In a later study, Grübler 
(2012) claims three major insights from energy transitions research. These include the 
role of energy end-use driving energy transitions, and the slow pace of such transitions. 
He also finds that the timing and speed of transitions have been very different in Europe, 
and claims the presence of distinct patterns in the successful diffusion of technology 
systems. Most importantly, the persistence and continuity of policies are deemed as the 
key for this success, as energy transitions take long, and at the same time technological 
knowledge depreciates very fast. Erratic policies can easily fail to trigger the expected 
outcome.  

All of the above insights on energy transitions and ladders further highlight the 
importance of proper policy measures to actively manage the transition towards low-
carbon sources. Gross et al. (2009) note that investment conditions created by policies 
will significantly impact on the success of energy technologies. Schaffer and Bernauer 
(2014) report that renewable policies such as feed-in-tariffs (FiT) have drastically 
increased the use of renewable sources in power generation in Germany between 2000 
and 2008. However, significant challenges to clean-energy transitions are also arising 
from the economic viability of renewable energy. Increased renewable generation may 
result in strongly falling prices on the electricity markets, which might in turn decrease 
the value of renewables (Hirth, 2015). Hirth (2015) claims that because of this, long-term 
subsidies might be needed to ensure broad-deployment.  
 
Therefore, studying the dynamics of natural energy transitions and their policy 
implications is of crucial importance for future energy concepts. While a number of 
studies exist on general energy transitions (Grübler et al., 1999; Fouquet and Pearson, 
2012; Grübler, 2004; Araujo, 2014; Sovacool, 2016) and on the energy ladder (Burke 

                                                        
8 Csereklyei et al. (2016) investigate the stylized facts of energy and economic growth for 99 countries over the past 40 
years. Their findings indicate a stable relationship between energy use per capita and income over the past decades, a 
convergence in energy intensity and income per capita over the past two centuries, a declining energy/capital ratio with 
increasing income and over time, and a decline in the cost share of energy over time. They also find increasing energy 
quality with income, consistent with the energy ladder hypothesis.  
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2010 & 2013), to our knowledge our study is the first one addressing these dynamics with 
model based clustering methods, and extending the concept of energy trajectories with 
energy security implications. 
 
3. Data and Methods  

3.1 Data 

Our analysis is based on an unbalanced dataset of the 28 countries of the European Union 
covering the period 1971 to 2010. Our main variable is the primary energy mix9 (energy 
carrier composition) over this period. We define the primary energy mix as the 
combination of eight different energy forms, which make up the total primary energy 
consumption: biomass, coal, oil, natural gas, nuclear energy, hydro-energy, renewables, 
and others.10 The sum of the shares of these energy carriers in energy consumption adds 
up to one. The IEA (2013) aggregates under traditional biomass fuelwood, charcoal, 
animal dung and agricultural residues in stoves, most of which are used with very low 
efficiencies (Csereklyei et al., 2016). Biomass therefore is usually found at the lower 
ranks of the energy ladder (Burke, 2013).11 Trade and final consumption from “heat” and 
“electricity” included negative values due to exports. These trade flows are captured by 
the category “others”. This category sums up on average (over countries and time) to 
0.6% of primary energy consumption. Data for the entire observation period is available 
for 23 countries, in case of Estonia, Latvia, Lithuania, Slovenia and Croatia the IEA 
energy data starts only in 1990.  

Additional indicators, used for external validation include population and purchasing 
power adjusted real GDP per capita between 1971 and 2010 from the Penn World Table 
7.1 (Heston et. al., 2012). The energy security variable (energy import as % of energy 
use) originates from the WDI database (World Bank, 2015). Indigenous resource 
endowments were sourced from Burke (2013).  

3.2 Methods: Model Based Clustering  

We use model based clustering of country-years to investigate energy paths and profiles 
in the European Union. Traditional time series clustering (Liao, 2005) has been applied to 
various areas of life and science (Aghabozorgi et al., 2015), including energy data. 
Among others, Iglesias and Kastner (2013) investigated building energy patterns, and Hsu 
(2015) presented a comparison of several clustering methods to predict energy 
consumption data. Different clustering techniques have been also used for electric power 
system load forecasting (Duan et al, 2011), outlier detection in building energy 
consumption (Li et al. 2010), wind-speed forecasting (Liu et al. 2015), and environmental 
damage assessment in marine ecological environment (Yang, 2015).  While the 
application of clustering methods, and especially model-based clustering is relatively new 

                                                        
9 Primary energy consumption is defined in our study as the IEA (2014)’s TPES measurement, calculated as indigenous 
production + imports – exports – international marine bunkers – international aviation bunkers +/- stock changes. As 
mentioned earlier we work with the composition of primary energy consumption as this includes potential exports and 
imports and the connected energy choices. 
10 We, therefore, grouped together some of the energy sources as follows: “Oil” is the sum of “crude, NGL, and 
feedstocks” and “oil products”. “Coal” is the sum of “coal” and “peat”. The “Renewables” category includes heat and 
primary electricity gained from “geothermal energy”, and from “solar & wind”. 
11 Even though highly advanced methods appeared in the past years in developing countries to process biomass, their 
use is not widespread yet, and thus non-sufficient to change our category of biomass as “low-quality” energy form. 
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in energy economics and policy, machine-learning algorithms are becoming an 
increasingly popular way to address profiling and forecasting problems.  
 
The underlying idea of any clustering technique is to group high-dimensional objects, 
which are measured along several dimensions into meaningful groups (Ahlquist and 
Breunig, 2012). Our variable of interest is the primary energy mix of the 28 member 
states of the European Union between 1971 and 2010, as described in the data section. 
Therefore the unit of observation is the energy mix of country “i”, in year “t”, or country-
years. We analyze the composition of these energy mixes, and whether they can be 
grouped into clusters over cross-sections and time. Countries may stay in the same cluster 
over the entire observation period, or move up or down across the clusters. We call this 
behavior their "energy path". 
 
Model based clustering belongs to the category of unsupervised learning algorithms, and 
has its foundations in probability theory. Unsupervised learning methods are able to 
determine the shape and the number of clusters that optimally describe and confirm the 
structure of the underlying data (Ahlquist and Breunig, 2012). The discovery of 
meaningful structures by means of unsupervised learning can be then used to evaluate 
theoretical expectations about the nature and dynamics of the data. Based on these 
methodological properties, we argue that using model based clustering is a novel and 
interesting method in examining the energy paths of nations. Ahlquist and Breunig (2012) 
note that as the number of dimensions relative to the number of observations is increasing 
it becomes increasingly difficult to identify general patterns in the data, or to identify the 
existence and the shape of clusters. As we work with k= 8 dimensions comprising of the 
different energy carriers, and n=1025 country-year observations, identification in our case 
is not a serious problem. While it is possible to group unrelated concepts such as energy 
mixes or endowments together, for the purpose of this study we were interested purely in 
the changes in the energy mix, and in the validation of energy ladder and transition 
theories.  
 
The clustering algorithm is applied simultaneously to the entire dataset, therefore the 
clusters are created with all observations (“country-year” values) being considered at 
once. Because of this, the clusters represent the “same concept” over the successive years. 
This is also the reason why the problem of missing country-year observations resulting 
from an unbalanced panel is not significantly affecting the validity of the results. The 
main purpose of our approach is thus to derive clusters, which are stable over time. 
Stability here refers the accumulation of similar country-year observations that define a 
cluster. This does not mean that countries have to stay in a cluster, but that enough 
countries pass through a given composition (cluster) in time, hence a large number of 
country-year points can be assigned to form a specific composition. Changing the cluster 
membership over the years therefore reflects the time series aspect of the analysis.     
 
For the purpose of our analysis we assume that the data is generated by mixture models12 
(Fraley and Raftery 2005; Raftery and Dean 2006), enabling a so-called “soft-clustering” 
procedure. Soft clustering implies that the probabilities for an observation (country “i” at 

                                                        
12 In case of mixture models, the data generation process (DGP) is assumed to be given by some finite mixture of 
probability distributions, where 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛), is an 𝑛𝑛 x k matrix of “n” objects measured on “k” dimensions. This 
implies that the density of x will be given by a mixture of the form 𝑓𝑓(𝑥𝑥) =  ∑ 𝑞𝑞𝑔𝑔𝑓𝑓𝑔𝑔(𝑥𝑥)𝐺𝐺

𝑔𝑔=1 , where G is the number of 
mixture components, and 𝑞𝑞𝑔𝑔 is the proportion of objects in a component g, and 𝑓𝑓𝑔𝑔(∙) is the density function for 
observations in component g (Ahlquist and Breunig, 2012).  
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time period “t”) of being in a specific cluster at a certain point in time are computed and 
weighted. Models with different covariance structures are allowed and thus we are able to 
accommodate different cluster shapes and sizes, varying in volume and direction. We 
assume a multinormal13 distribution for the variables with cluster specific parameters  
(𝜇𝜇𝑔𝑔, Σ𝑔𝑔). The assignment of an observation to a cluster is modeled by a multinomial 
distribution, for details, see Ahlquist and Breuning (2012).14  One potential concern that 
has to be noted in connection with the approach is the potential autocorrelation of the 
shares of energy forms in one country over time, which violates the basic assumption of 
observational independence. Since we are only interested in classification, this issue 
should not influence the interpretability of our conclusions.  
 
It has to be noted that using Gaussian models, the model based clustering algorithm 
identifies spherical or ellipsoid shaped clusters, yet fails to identify line shaped or 
rectangular clusters.  Despite the fact that the variables of the energy mix are themselves 
not always normally distributed, a cross-variable plot of the data shows in Figures 1a and 
1b that the ellipsoidal clustering assumption is still valid, and as a consequence the 
Gaussian distribution assumption is a good approximation. Assuming that clusters follow 
a certain model type, model based clustering searches for the optimal shape and number 
of clusters, given the structure of the data.  
 
In our study, we defined eight dimensions corresponding to share of the energy carriers 
making up the national primary energy consumption mix. Fitting the model via 
expectation maximization15 (EM) (Ahlquist and Breunig, 2012; Dempster et al., 1977) for 
each parameterization of the covariance matrix Σ𝑔𝑔 might lead to different shapes of the 
clusters. To avoid the models showing degeneracy, singularities or shrinking components 
we used a highly dispersed conjugate prior suggested by Fraley and Raftery (2007), and 
chose the  “VVV” initialisation procedure, that places no restrictions on the covariance 
matrices in the clusters.  
 

                                                        
13 By assuming multivariate normal densities for all groups, we can substitute 𝜙𝜙 (𝑥𝑥|𝜃𝜃𝑔𝑔) for 𝑓𝑓𝑔𝑔(𝑥𝑥), where 𝜙𝜙�∙ �𝜃𝜃𝑔𝑔� is the 
multivariate normal density function with parameters 𝜃𝜃𝑔𝑔 = �𝜇𝜇𝑔𝑔, Σ𝑔𝑔 �. The density takes therefore the form: 

𝜙𝜙�𝑥𝑥𝑖𝑖�𝜇𝜇𝑔𝑔, Σ𝑔𝑔� = (2𝜋𝜋)−
𝑘𝑘
2�Σ𝑔𝑔�

−1
2 exp[−1

2
�𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑔𝑔�

′Σ𝑔𝑔−1(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑔𝑔).  An observation would be classified being in a group g, 

if  𝜏𝜏𝑔𝑔(𝑥𝑥) >  𝜏𝜏ℎ(𝑥𝑥),∀ ℎ ≠ 𝑔𝑔, ℎ ∈ 1, … ,𝐺𝐺,  where 𝜏𝜏𝑔𝑔(𝑥𝑥) = 𝑞𝑞𝑔𝑔𝜙𝜙 (𝑥𝑥|𝜃𝜃𝑔𝑔)
∑ 𝑞𝑞ℎ𝜙𝜙(𝑥𝑥|𝜃𝜃ℎ)𝐺𝐺
ℎ=1

  in which case, 𝜏𝜏𝑔𝑔 is the posterior probability that 

an object belongs to group “g” (Ahlquist and Breunig, 2012). 
14 All calculations were done with R’s “mclust” package  version 5.2  (Fraley et al., 2012; Fraley and Raftery, 2002).  
15 The process of fitting the model treats the actual cluster to which observation i belongs as missing data. The complete 
dataset, 𝑦𝑦𝑖𝑖 is denoted by (𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖), where 𝑥𝑥𝑖𝑖 , represent the observed data, on which we have to fit the clustering model and 
𝑧𝑧𝑖𝑖 is a G-vector of the gth element, which takes on the value of 1 iff i belongs to cluster g and 0 otherwise. By assuming 
that 𝑧𝑧𝑖𝑖~𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚(𝜏𝜏1, … , 𝜏𝜏𝐺𝐺),  the “complete data” likelihood can be given by: 𝐿𝐿𝑐𝑐 = ∏ ∏ [𝜏𝜏𝑔𝑔 𝜙𝜙𝑔𝑔�𝑥𝑥𝑖𝑖�𝜃𝜃𝑔𝑔�]𝑍𝑍𝑖𝑖𝑔𝑔𝐺𝐺

𝑔𝑔=1
𝑛𝑛
𝑖𝑖=1 . The 

EM procedure begins with the "maximization-step”, in which the likelihood function is maximized with respect to 
(𝜏𝜏1, … , 𝜏𝜏𝐺𝐺;𝜃𝜃1 , …𝜃𝜃𝐺𝐺), holding z at �̃�𝑧. With the initialized responsibilities held at �̃�𝑧𝑖𝑖𝑔𝑔, the estimated parameters in the 
maximum likelihood step are now used to update the hidden variable �̃�𝑧𝑖𝑖𝑔𝑔. Therefore, the initial cluster assignments of 
the hierarchical clustering change. This step is called "expectation-step". With this new assignment the inferred 
parameters also change. Each "e-step" follows another "m-step" and vice versa until the algorithm converges. 
Initialization assumptions refer to the estimation of the hidden variable �̃�𝑧𝑖𝑖𝑔𝑔 or its assignment to a cluster, since the 
responsibilities �̃�𝑧𝑖𝑖𝑔𝑔 can only be calculated after the first m-step. Therefore to “kick-off” the EM algorithm an 
initialization responsibility is needed. We use model-based Gaussian hierarchical clustering to initialize �̃�𝑧𝑖𝑖𝑔𝑔.  
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Figure 1a. Cross variable plot of the cluster dimensions: We show scatterplots of the 
shares allocated to each energy type. Note that the scaling differs due to better readability.     
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Figure 1b. Cross variable plot of the cluster dimensions: We show the time dimension 
of the scatterplots with red marks denoting observations in 1971, proceeding towards 
yellow in 2010. Note that the scaling differs due to better readability.     
 
The “VVV” algorithm assumes that the data follows a multivariate Gaussian distribution 
and places no restriction on cluster size, orientation or volume. In every step the total 
change in the likelihood resulting from the merging of two clusters is calculated. The 
merge leading to the highest likelihood will be applied. As noted previously the algorithm 
is applied to all observations simultaneously. In determining the optimal number of 
clusters, we used both the Elbow criterion, as suggested by Ahlquist and Breunig (2012) 
and a modified BIC criterion. Dziak et al. (2012) suggested adjusting the penalty term of 
the BIC criterion. As the BIC criterion does not penalize the number of clusters in a 
sufficient manner, we have set the penalty for the adjusted BIC the following way:  
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑚𝑚𝑚𝑚𝑔𝑔𝐿𝐿�𝑥𝑥,𝜃𝜃�𝐺𝐺� − 3𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑔𝑔𝑛𝑛       (1) 
 
Figures 2 and 3 show the optimal number of clusters selected based on the adjusted BIC 
and the Elbow criterions, both at seven clusters, or seven distinctive energy profiles. This 
means that seven clusters best explain the structure of the data, after penalizing for the 
number of clusters. 
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Figure 2. Optimal number of clusters based on the adjusted (negative) BIC criterion: 
The selection criterion was defined as: − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = − 2𝑚𝑚𝑚𝑚𝑔𝑔𝐿𝐿�𝑥𝑥,𝜃𝜃�𝐺𝐺� +  3𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑔𝑔𝑛𝑛 .       
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Figure 3. Optimal number of clusters based on the Elbow criterion 
 
Ahlquist and Breuning (2012) argue that unsupervised learning is a useful tool in 
evaluating theoretical claims, based on whether or not meaningful structures and patterns 
consistent with the theory are found in the data. Hence, the main rationale behind the 
usage of machine learning algorithms is to seek and infer such patterns and structures, 
without prior classification. Several theoretical concepts have been introduced in the 
previous section about energy transitions and the energy ladder. Therefore, we would like 
to test whether the composition of the seven identified clusters exhibit specific properties, 
and whether countries embark on certain paths over time, and then validate these patterns 
against economic theory. 
 
4. European Energy Paths and Strategy 
 
4.1. Energy Profiles and Paths  

This section analyzes the development of the energy mixes of the European Union 
member states, with special emphasis on path profiles and dependencies. Specifically we 
seek evidence for the presence of a national energy ladder, endowment lock-in effects 
(Burke 2010 & 2013), for the theory of increasing energy quality with income (Csereklyei 
et al., 2016), and a possible convergence in energy intensity as national energy policy (EC 
2013 &2014a) and technological levels converge over time (Csereklyei et al., 2016). The 
overall composition of the selected clusters represent specific energy profiles or a 
characteristic mix of primary energy carriers. Since countries may switch clusters, or 
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profiles over the examined period, the number and combination of countries in a certain 
cluster does not stay constant. The identified clusters, their energy mix composition, and 
the standard errors are found in Table 1.  

Type   
Cluster.7 

 
Cluster.6 

 
Cluster.5 

 
Cluster.4 

 
Cluster.3 

 
Cluster.2 

 
Cluster.1  

 Oil 95.4 24.7 31.6 41.1 48.0 56.0 33.0 
  5.8 11.9 6.3 15.6 8.0 15.4 5.2 
 Gas 0.0 10.1 43.5 16.0 21.7 8.9 10.6 
  1.1 4.1 6.4 8.6 9.1 7.5 7.9 
 Coal 3.7 59.7 15.4 31.6 15.7 16.5 8.9 
  5.7 17.9 5.6 11.0 10.7 8.0 5.9 
 
Biomass 0.5 3.2 2.9 1.5 7.8 6.2 11.6 

  0.7 3.5 2.4 1.3 6.8 4.4 5.5 
 Nuclear 0.0 0.0 5.0 8.9 0.0 7.8 30.9 
  0.8 0.7 5.3 7.9 0.6 7.6 8.8 
 Hydro 0.0 0.2 0.9 0.7 4.2 4.3 5.1 
  0.2 0.2 1.2 0.7 3.9 2.8 4.2 
 Renew 0.4 0.0 0.1 0.0 0.8 0.4 0.1 
  0.7 0.1 0.2 0.0 1.0 0.7 0.1 
Table 1: Energy Profiles of the European Union 1971-2010 

Table Notes: the energy mixes were defined as the ratio of oil, gas, coal, biomass, nuclear, 
hydro and renewable energy. The group excluded for the purpose of calculations included 
electricity exports and imports, that were not otherwise classified into energy carriers. 
Standard deviations are found in italics.  

The shares allocated to each energy carrier in our clusters are an average over time and 
across countries, in a given cluster. An energy-profile is formed by specific country-year 
observations getting assigned to a cluster across all data points. The standard deviations 
show that the clusters are relatively stable, which can be understood as a high number of 
observations of characteristic combinations of energy shares that countries exhibit, or 
have exhibited at some point in the past, when passing through that cluster. These profiles 
can be understood as rungs towards a higher quality energy mix.  

We number the clusters identified by our machine learning algorithm from 1 to 7 based on 
the combined share of fossil fuels in the energy mix, including coal, oil and natural gas. 
High fossil-fuel clusters carry a higher number. The reason for this is that fossil fuels 
make up the majority of primary energy supply, and we would have liked to trace how 
countries substitute (or not) between different energy forms, and whether we observe as 
expected a transition away from fossil fuels towards higher “rung” energy forms (Burke, 
2013). Countries however may not transition towards a lower-fossil fuel profile, or do so 
very slowly due to endowment effects (Burke, 2013). Our method therefore allows for the 
detection of path inertia (Sovacool, 2016), indicated by the same profile throughout the 
observation period, as well as for potential increase in fossil-fuel dependency.  

While we chose to order the clusters based on their combined fossil fuel use, the share of 
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oil, gas and coal consumption differ within the clusters. For example cluster 4 has lower 
total fossil use than cluster 5, but consists of more coal and oil, while cluster 5’s 
composition relies on natural gas and oil consumption. Based on this ordering, the share 
of fossil fuels drops from 99.1% in cluster 7 to 52.5 % in cluster 1. Should countries over 
time systematically move between clusters, and predominantly move towards lower 
number clusters, this would indicate the presence of an energy transition towards less 
fossil fuel use and towards increased renewable and nuclear energy use.  
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Austria 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Belgium 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 

Bulgaria 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 

Croatia 
                   

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Cyprus 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

Czech Rep. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 

Denmark 4 4 7 7 7 7 7 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Estonia 
                   

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

Finland 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

France 2 2 2 2 2 2 2 2 2 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Germany 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 

Greece 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Hungary 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

Ireland 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 

Italy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Latvia 
                   

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Lithuania 
                   

1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 

Luxembourg 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 3 3 3 3 3 3 3 3 3 

Malta 7 7 7 7 7 7 7 7 7 7 7 7 7 7 4 7 7 7 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

Netherlands 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

Poland 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

Portugal 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 

Romania 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

Slovak Rep. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

Slovenia 
                   

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Spain 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Sweden 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

UK 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 

Table 2: Country-year matrix of cluster occupation 1971-2010 
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This would also potentially lead to the diversification of the energy consumption 
mix—which—in the absence of indigenous resources—is a mayor factor in increasing 
long-term energy security16. Table 2 presents the country-year matrix of cluster 
occupation over the entire observation period. 

Examining the profiles, clusters 7 and 6 seem to be “locked in” in their position with 
only limited movements to and from these clusters. These profiles are bound with 
high inertia and path-dependence. Cluster 7 shows the highest fossil fuel consumption 
with 99.1%, from that 95.4% oil, and includes the islands of Cyprus and Malta in 
2010, both of which cover the majority of their primary energy consumption with 
imported oil. For a short period of time between 1973 and 1977, this cluster also 
harbored Denmark, an oil producer. Cluster 6 is still dominated by fossil fuels, 
totaling to 94.5% of the primary energy use, with negligible hydro, nuclear or 
renewable energy. The main portion of fossil fuel consumption is met by coal. It 
includes Estonia and Poland in 2010, both of which show very high shares of coal in 
their national energy mixes over the past forty years. This is not surprising in the light 
of abundant coal resources in Poland, as indigenous resources not only tend to be 
cheaper but also more supply secure. Initially also Hungary, the Czech Republic and 
Luxembourg belonged to this cluster, but these countries transitioned towards less 
fossil intensive fuel mixes.  
 
Clusters 5 and 4 show similar levels of fossil fuel consumption, with 90.5 % and 
88.7% respectively, however while cluster 5 is dominated by a combination of natural 
gas and oil, the energy demand is met by oil and coal in cluster 4. Cluster 5 originally 
included the Netherlands and Romania in 1971 both of which retained their positions, 
and included additionally Belgium, Hungary and the United Kingdom by 2010, all of 
which transitioned from cluster 4. We saw that the main difference between clusters 5 
and 4 lies in the composition of the fossil fuel supply. Therefore we see a substitution 
towards a gas/oil dominated mix from an oil/coal dominated mix. Cluster 4 has 
evidenced a transition from its 1971 occupants to only Slovakia by 2010.  

In cluster 3 the share of renewables, hydro and biomass generation rises as fossil fuel 
shares begin to decline. Austria, Croatia and Latvia remained in this cluster for the 
entire period, while Portugal, Italy and Lithuania, moved here from clusters 2 & 1, 
and all other countries from higher fossil fuel clusters. The shift towards higher-
quality energy forms is further amplified in cluster 2, with an average of 81.4% 
dependency on fossil fuels, and a combination of nuclear, biomass, and hydro energy 
to meet the rest of the demand.  Cluster 1 shows a visible transition to non-fossil 
energy forms including all forms of renewables, hydro and nuclear energy, a 
combination of which almost covers half of the primary energy consumption. Cluster 
2 originally included Finland, France, Greece, Italy, Portugal, Spain and Sweden in 
1971. From the original “inhabitants”, Finland, France and Sweden transferred to 
cluster 1, while Greece, Portugal, and Italy to higher fossil fuel clusters.  

In 2012 the EU’s energy mix was made up of 32% oil, 23.9% natural gas and 17.5 % 
coal, or a total of 73.4% fossil fuels  (IEA, 2014b). This number is lower than the 
fossil fuel share in cluster 2. This supports the claim of the IEA (2014b) that alone 
since 2007, the consumption of fossil fuels declined by 11.9% in the European Union. 

                                                        
16 Short-term security on the other hand may include the diversification of suppliers and supply routes for the 
existing mix (Jewell, 2011). 
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The IEA (2014b) also notes that the overall EU energy mix is slow to change and 
individual members have considerably different energy portfolios, depending on their 
national energy policy and indigenous endowments. Renewable energy accounted for 
12.1% of total primary energy supply in 2012. This was made up from biofuels and 
waste (8.3%), hydro (1.8%), wind (1.1%), solar (0.6%) and geothermal (0.3%) energy 
(IEA, 2014b). While the share of renewables has increased from 8% in 2007, mostly 
driven by solar and wind deployment, the share of hydro-energy remained relatively 
stable due to high saturation. Despite the high growth rates in solar and wind power, 
these energy sources still make up only a minor part of the primary energy supply17.  

4.2. National-Level Energy Ladder, Endowment Effects, Energy Intensity 
Convergence and Energy Security   

To test the energy ladder hypothesis introduced in section 2, we compare the different 
energy profiles along their income per capita levels and development. Theoretically 
the highest income per capita levels should be associated with the highest quality 
energy profiles, and vice versa. Figure 4 depicts the weighted average GDP per capita 
development of the clusters over time. While the different profiles include 
characteristic combinations of energy forms, and countries transit between these 
profiles, systematically it appears that higher energy quality clusters tend to have the 
uppermost GDP per capita, such as clusters 1 and 2 in 2010. At the same time clusters 
6 & 7 show over the entire observation period the lowest per capita income. These 
observations would support descriptive evidence on the presence of a national-level 
energy ladder, even though we do not study the impact of GDP per capita on the 
different energy sources, but on distinct combinations of these sources.  

                                                        
17 Wind energy is currently the most cost efficient renewable energy source, despite the integration challenges into 
the power systems due to its intermittency (Duić et al., 2013). 
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Figure 4. GDP per capita development of the clusters: The log GDP per capita is 
the population weighted average of all countries in a cluster in a corresponding year. 
Note that the countries in a specific cluster vary over time.   
 
We also test the claims that high indigenous resource endowments cause path inertia, 
and countries with high own resources progress slower on the energy ladder. Figures 
5 a-e show the weighted average resource endowments per capita development of the 
clusters, including coal, lignite, gas, and freshwater. We also present forest areas as 
the percentage of land.  
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Figures 5 a. and b. Natural gas and hard coal reserves per capita development of 
the clusters: The reserves per capita are the population weighted average of all 
countries in a cluster in a corresponding year. Note that the countries in a specific 
cluster vary over time.   
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Figures 5 c. and d. Lignite reserves and renewable internal freshwater resources 
per capita development of the clusters: The reserves per capita are the population 
weighted average of all countries in a cluster in a corresponding year. Note that the 
countries in a specific cluster vary over time.  
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Figures 5 e. Forest area development of the clusters: The reserves per capita are 
the average of all countries in a cluster in a corresponding year. Note that the 
countries in a specific cluster vary over time. 

As we can see from Figure 5a cluster 5 with a natural gas share of over 43% in the 
energy mix had by far the highest average per capita proved reserves of natural gas 
measured in trillion cubic feet in 2010 (US EIA) throughout the examined period. 
Similarly, Figure 5b shows the coal endowments, measured as recoverable hard coal 
in million short tons per capita in 2008 (US EIA) per cluster. Cluster 6 stands out 
clearly as the energy profile with the highest natural coal endowments on the one 
hand, and with the highest share of coal use in energy consumption with close to 60% 
on the other hand. We also note that movements out of these clusters are sluggish 
with many countries never changing their positions. Cluster 5 however has seen a 
number of new entrants in the past twenty years, supported by either discovery of new 
gas resources or better pipeline access. Figure 5 c presents the recoverable lignite in 
million short tons per capita (US EIA), with clusters 2 and 4 displaying the highest 
reserves.  

Figures 5 d and e show average renewable internal freshwater resources per capita in 
cubic meters, and forest areas as % of land area (WDI). While large shares of low-
grade biomass use characterize many low-income countries’ energy consumption, 
biomass use at higher income levels usually involves higher-efficiency combustion. 
Clusters 1-3 display a relatively high use of biomass compared to the other profiles. 
Accordingly, the highest forest areas per percent of land area are observed also in 
clusters 1 and 2. Similarly, clusters 1-3 show both the highest renewable freshwater 
resources per capita available and the highest utilization of those resources in the form 
of hydro energy. Testing the energy profiles identified by our model based clustering 
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algorithm with respect to the presence of endowments supports the claim that 
countries with high own resource endowments use predominantly the locally 
available energy form.  

 
Figure 6. Energy use per capita development of the clusters: The log energy use 
per capita is the population weighted average of all countries in a cluster in a 
corresponding year. Note that the countries in a specific cluster vary over time.   
 

Figure 6 presents the weighted average energy use per capita patterns of the different 
clusters. We can clearly observe that higher-fuel-mix profiles tend to consume the 
highest per capita primary energy in 2010. This indicates that along the income 
spectrum countries tend to use more energy per capita on the one hand, however also 
exhibit higher quality energy mixes on the other hand. Thus the impact of these forces 
on the carbon intensity of the economy is twofold. Firstly, higher energy use would 
increase, but a cleaner energy mix would decrease carbon intensity. Observing the 
development of per capita energy use in the clusters however reveals another story, 
with strongly decreasing energy use per capita compared to the 1980s for clusters 5 
and 6 for example. The energy use per capita of former East Bloc countries drastically 
reduced after the 1990s, and thus these countries might significantly influence the 
energy use development of these clusters. At the same time, the energy intensity 
development of the clusters appears to be reducing and converging over time, as 
shown in Figure 7. This supports the findings of Csereklyei et al. (2016) that energy 
intensity is decreasing and converging over time and income. While all clusters have 
experienced decreasing energy intensity of their economies, the change was most 
pronounced in case of clusters 4, 5 and 6, which include a number of former transition 
(Eastern European) countries and showed the highest starting energy-intensity levels.  
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Figure 7. Energy intensity development of the clusters:  The log energy intensity is 
the average of all countries in a cluster in a corresponding year. Note that the 
countries in a specific cluster vary over time.   
 
The security of energy supply is of crucial importance for the EU, which imports 
about 53% of its total energy consumption (European Commission, 2014b). This 
figure has been continuously growing in the past years, and is expected to further 
increase in the future. The EU currently imports approximately 90% of its crude oil 
use, 66% of natural gas use, and 42% of solid fuel use. Especially in case of natural 
gas imports, the Union is dependent on a single external supplier (European 
Commission, 2014b).. Figure 8 shows the average import dependency (defined by the 
World Bank as net energy imports in percent of the total energy use18) development 
for each of the energy-profiles over time. 

                                                        
18 “Net energy imports are estimated as energy use less production, both measured in oil equivalents. A negative 
value indicates that the country is a net exporter. Energy use refers to use of primary energy before transformation 
to other end-use fuels, which is equal to indigenous production plus imports and stock changes, minus exports and 
fuels supplied to ships and aircraft engaged in international transport.” (World Bank, 2015) 
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Figure 8. Energy import dependency of the clusters: Average of the World Bank’s 
import dependency measure in the corresponding clusters. Note that the countries in a 
specific cluster vary over time. 

As expected, due to the high oil imports, cluster 7 shows the highest import 
dependency, followed by clusters 3 and 2. Both clusters 3 and 2 include close to or 
above 50% dependency on oil, with relatively lower coal and gas share in the primary 
energy mix, resulting in high import dependency. Import dependency is the lowest in 
clusters 6 and 5, with a relatively high share of indigenous coal and natural gas 
consumption compared to oil use. While oil consumption may be a major factor 
contributing to high import dependency, oil supplies are diverse, and may be readily 
transported by tankers, in case of pipeline problems. Only 20% of the EU’s oil is 
flowing through pipelines (Bjørnmose et al. 2009)19. At the same time natural gas 
dependency towards a single supplier means high national and energy security risk in 
case of supply disruptions for any reasons. Firstly, gas markets have a local nature 
with differing price levels, and liquid natural gas (LNG) transports to harbors can be 
rather expensive. Bjørnmose et al. (2009) note that a weak structural point of the EU 
pipeline system is the limited connection between Western and Eastern Europe. 
Furthermore the gas infrastructure is not subject to the general competition rules of 
the EU, but is regulated by Third Party Access. In accordance with this, the proposed 
energy security strategy of the European Union includes among others the 
exploitation of indigenous resources including renewable energy, the diversification 
of suppliers and supply routes, and the effective reduction of energy intensity 

                                                        
19 More precisely through the Druzhba pipeline running from Russia through the Baltic States to Germany and 
Poland, with another branch reaching Slovakia and Hungary, and through the Norpipe running from Norway to the 
United Kingdom.   
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(European Commission, 2014a).20  

4.3 Country-paths  

Figure 9 depicts the individual country paths between 1971 and 2010. In summarizing 
the general patterns, out of 28 countries, only six transitioned to clusters with higher 
average fossil fuel share for various reasons, namely Belgium, Greece, Italy, 
Lithuania, Portugal and the United Kingdom. From these countries, Belgium is 
characterized by energy intensive chemical and shipping industries (Eurostat, 2009), 
and high fossil fuel imports after the closing of its coal mines. Belgium is currently 
increasingly relying on renewables besides its nuclear power plants (the last of which 
is planned to be shut down in 2025). The Greek energy system is special, as the 
country is made up of several islands lacking interconnections between them and the 
mainland (Eurostat, 2009). Greek indigenous resources are rich in lignite, causing a 
lock-in in lignite power generation. Due to the high oil and lesser gas imports, the 
country has a relatively high import dependency. Italy moved from cluster 2 to 3 in 
1987, a year before the country’s nuclear power plants were turned off after a 
moratorium on nuclear power. Similarly to Italy, the Lithuanian transition is also 
owed to the shutting down of Lithuania’s nuclear power plants upon EU entry.  

Portugal has almost no indigenous resources and is entirely dependent on the imports 
of fossil fuels. According to Eurostat (2009) its energy growth has been higher than 
the corresponding economic growth in the last decade, therefore the country’s energy 
intensity increased, against the general trend. The United Kingdom on the other hand 
is rich both in coal, North Sea oil and gas (the production of which peaked around 
2000 (Eurostat, 2009)), and is one of the oldest civilian nuclear state. Due to the large 
amount of domestic gas available, the country transitioned from coal towards gas 
powered electricity generation during the past years. This transition is clearly depicted 
by the change of clusters from cluster 4 to 5.  

Ten countries never changed clusters during the observation period, namely Austria, 
Croatia, Cyprus, Estonia, Latvia, the Netherlands, Poland, Romania, the Slovak 
Republic and Slovenia. Further two countries ended in the same cluster they started 
in, with minor fluctuations, including Spain and Malta. These countries can be 
separated into three distinctive groups, with different potential drivers or combination 
of drivers for lock-in. The first group is characterized by geographical lock-in, the 
second-group by infrastructural and grid system inertia, and the third group is driven 
by path dependencies due to abundant domestic energy resources. 

The islands of Cyprus and Malta belong to the first group, almost exclusively 
dependent on imported petroleum consumption. The second group includes countries 
with low or no indigenous fossil or hydro resources, however with a distinct 
infrastructural, grid and pipeline lock in, such as Slovenia and Slovakia, both of 
which utilize nuclear energy and are transit countries for gas. Abundant indigenous 
resources are at work on the other hand in the third group, including Estonia with 
significant oil shale reserves, accounting for 90% of its power production and 70% of 
its primary energy use (US EIA, 2015). Poland possesses the largest coal reserves in 

                                                        
20 The Commission estimates that avoided imported fuel costs due to increasing use of renewable energy 
amounted to at least some EUR 30 billion a year. 
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Europe and relied on coal and lignite to cover almost 55% of its primary energy 
consumption in 2012 (US EIA, 2015).  While its fossil fuel dependence is among the 
highest, the country has a low energy import dependency.21 Another country with 
significant fossil reserves is Romania. The Netherlands relies primarily on its natural 
gas, well-connected international grids and is the second largest gas producer in 
Europe after Norway (US EIA, 2015). Nevertheless it imports a large share of its 
petroleum products, making up about 50% of its primary consumption (US EIA, 
2015). Countries relying heavily on non-fossil fuel reserves include Austria and 
Latvia, both of which take advantage of their hydropower capacities. Latvia in 
addition has significant biomass resources in the form of wood (Eurostat, 2009). 

The last group of ten countries, including Bulgaria, the Czech Republic, Denmark, 
Finland, France, Germany, Hungary, Ireland, Luxembourg, and Sweden tended to 
move towards higher quality energy mixes. One common factor is that many of these 
countries built up a large nuclear energy production share in the primary energy mix 
by 2010 that enabled them to substitute away from fossil fuels. Apparently in the 
absence or in the limited presence of large hydro-power capacities and endowments, 
the only alternative energy form enabling a significant reduction of fossil fuel 
dependence was nuclear energy in the past.  

Of these countries, Bulgaria, the Czech Republic, Finland, France, Germany, Hungary 
and Sweden possess nuclear power plants. Most prominently the French energy 
strategy is dominated by nuclear energy, providing about 40% of the total primary 
energy consumption. The past nuclear expansion in France was based on a clear 
political decision to reduce dependence on imported fuels. Another important French 
energy policy concerned energy efficiency, which resulted in France being one of the 
most energy efficient countries in Europe (Eurostat, 2009). Currently Finland is the 
only country besides France engaging in the building of a new ERP reactor, 
simultaneously to the planned construction of a Russian designed reactor. Sweden 
takes also advantage its large biomass reserves, its nuclear and hydro energy, and 
strong energy efficiency programs. Germany is currently characterized by the 
increasing share of renewables, but also by increased coal usage after the shut-down 
of its nuclear power plants in 2011. However, since our dataset runs only until 2010, 
we do not yet see this transition. Quite contrary to the German nuclear policy, 
Hungary is currently seeking to extend its nuclear power, which is already supplying 
the majority of its power generation. Non-nuclear states that improved their positions 
include Denmark, Ireland and Luxembourg. Denmark possesses large quantities of 
North Sea oil and gas, yet promoted renewable energy and energy efficiency 
measures, developing one of the most successful wind-electricity programs in the 
world.  

Changes in energy paths—if these occur—take a long time. We see that the average 
number of cluster leaps is 0.85. Countries spend decades in a certain cluster before 
moving different ones, either as a result of energy policies, economic development or 
due to the availability of a new dominant energy form.  

   

                                                        
21 Accordingly, Poland was the only EU member state, not in favor of a GHG reduction target for 2030 during a 
public consultation on the 2030 framework for climate and energy policies (European Commission, 2013). 
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Figure 9. Cluster occupation between 1971-2010.  
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 5. Conclusions and Policy Implications  

Energy transitions of the future carry enormous implications for both the security of 
energy supply and the environment, as well as for the quest to combat global 
warming. Using model-based clustering, not previously applied to the topic, we 
examined the “energy paths” i.e. the intertemporal development of the energy mixes 
of the member states of the European Union over 1971-2010. We identified seven 
distinct energy profiles, which we ranked from highest to lowest combined fossil fuel 
content.  
 
We find that countries tended to embark on a path towards higher quality energy 
mixes, and tended to reduce their dependence on fossil fuels over the examined 
period, unless path dependencies related to high indigenous resources, existing 
infrastructure, or geographical constraints existed. Significant reduction in fossil-fuel 
dependence over time was only achieved by states that deployed a combination of 
nuclear energy, hydropower, and renewable energy. It is true that renewable energy 
began to gain importance in electricity generation over the past decade, however, 
since electricity accounts for only a fraction of primary energy use, the total share of 
renewables in the primary energy mix is still low. A future area of research could be 
therefore to apply our methods to the electricity generation mix.  
 
The energy-GDP relationship displayed by our energy profiles show some evidence 
on the existence of a national-level energy ladder, meaning that higher energy-quality 
profiles tend to be associated with higher income and energy usage per capita. Also, 
high-income countries were likelier to embark on a transition away from high-fossil 
fuel usage, even in the presence of considerable own resources. Path dependencies 
caused by own resources are clearly identifiable in the composition and “inhabitancy” 
of the profiles. We find that clusters with the highest coal and natural gas usage 
respectively included countries with the largest coal and natural gas endowments per 
capita.  Similarly, high share of forests and freshwater per capita endowments were 
associated with a relatively high usage of biomass and hydro energy across all 
observations.  
 
Our results also identify energy intensity convergence across time and the income 
spectrum. While the average income of all clusters is increasing over time, energy 
intensity is decreasing. This drop is most pronounced in clusters that exhibited the 
highest energy intensity at the beginning of the period. Our results are thus in line 
with the findings of previous authors and suggest that continued economic growth 
will result in increasing quality of the primary energy mix. While endowments in 
renewable energy increase the above process, fossil resources have the ability to 
considerably delay it.  
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