Working Papers in Trade and Development Agglomeration effects of inter-firm backward and forward linkages: evidence from Japanese manufacturing investment in China Nobuaki Yamashita Toshiyuki Matsuura and Kentaro Nakajima April 2014 Working Paper No. 2014/008 Arndt-Corden Department of Economics Crawford School of Public Policy ANU College of Asia and the Pacific | | This Working Paper series provides a vehicle for preliminary circulation of research results in the fields of economic development and international trade. The series is intended to stimulate discussion and critical comment. Staff and visitors in any part of the Australian National University are encouraged to contribute. To facilitate prompt distribution, papers are screened, but not formally refereed. | |----|--| Co | pies may be obtained at WWW Site | | | p://www.crawford.anu.edu.au/acde/publications/ | # Agglomeration effects of inter-firm backward and forward linkages: evidence from Japanese manufacturing investment in China Nobuaki Yamashita (the corresponding author) School of Economics La Trobe University Melbourne, VIC 3086 Australia Ph: +61 3 9479 2719 E-mail: N. Yamashita@latrobe.edu.au Toshiyuki Matsuura Keio Economic Observatory, Keio University, Tokyo, Japan E-mail: matsuura@sanken.keio.ac.jp Kentaro Nakajima Graduate School of Economics, Tohoku University, Sendai, Japan E-mail: nakajima.kentaro@gmail.com # Agglomeration effects of inter-firm backward and forward linkages: evidence from Japanese manufacturing investment in China[§] Nobuaki Yamashita (the corresponding author) School of Economics La Trobe University Melbourne, VIC 3086 Australia Ph: +61 3 9479 2719 E-mail: N.Yamashita@latrobe.edu.au Toshiyuki Matsuura Keio Economic Observatory, Keio University, Tokyo, Japan E-mail: matsuura@sanken.keio.ac.jp Kentaro Nakajima Graduate School of Economics, Tohoku University, Sendai, Japan E-mail: nakajima.kentaro@gmail.com #### **Abstract:** This paper examines the agglomeration effects of multinational firms on the location decisions of first-time Japanese manufacturing investors in China for the period 1995–2007. This is accomplished by exploiting newly constructed measures of inter-firm backward and forward linkages formed in a home country. The conditional and mixed logit estimates reveal that agglomeration by first-tier suppliers and customers draws subsequent investment into a location. However, such agglomeration effects are not pervasive and do not extend to the second and third tiers. Instead, we find that agglomeration by third-tier suppliers generates a countervailing force, making a location relatively unattractive. **Key Words:** Agglomeration, Backward and forward linkages, Location choice of multinational enterprises JEL Classification: F23, L22, R3 Forthcoming in Journal of the Japanese and International Economies [§] We acknowledge the financial assistance from the Kikawada foundation in Tokyo, Japan as well as from the JSPS (#25380275). We are also grateful to Takatoshi Tabuchi and Kyoji Fukao for their supports for the grant application. We would also like to thank a referee of JJIE for the prompt, constructive and very useful comments. The quality of the paper has significantly been enriched by incorporating the referee's suggestions. We are also grateful to Rene Belderbos, Noel Gaston, Kozo Kiyota, and the workshop attendees at University of Tokyo, Keio University, Tohoku University, Prefecture University of Kumamoto, Fukuoka University and the Japan Society of International Economics for their useful comments. #### 1. Introduction The evidence that industries and firms agglomerate in particular locations is ubiquitous (eg, Ellison et al. 2010). There is also now ample evidence that multinational enterprises (MNEs) agglomerate in particular locations in a host country (see Head et al., 1995). For example, Debaere et al. (2010) reported that 60% of South Korean MNEs in the United States have located their manufacturing plants in the state of California, and 75% of them have established new affiliates in four provinces along the Northeastern coast of China. Similar evidence is also found at a disaggregated geographical level in other host countries, such as France (Crozet et al., 2004), Portugal (Guimarães et al., 2000), and Italy (Roberto, 2004). While location decisions of MNEs are somewhat different from those indigenous firms, it is commonly found that locations with many MNE plants belonging to the same industry or to vertically related industries are more likely to attract subsequent entries of MNE plants of the same national origin (Smith and Florida, 1994; Head et al., 1995, 1999; Head and Ries, 1996; Belderbos and Carree, 2002; Chang et al., 2013). This reflects the fact that the presence of MNE affiliates raises the probability of subsequent investment at the same location. This paper investigates a new dimension of agglomeration effects of MNEs by considering *inter-firm* backward and forward linkages. Specifically, we examine the location decisions of Japanese manufacturing MNE start-ups across 22 Chinese provinces between 1995 and 2007.² We extend the idea that the presence of input-output (I-O) linkages of MNEs formed in a home country influences their co-location-cum-foreign direct investment (FDI) decisions in a host country. Moreover, the presence of inter-firm linked downstream or upstream affiliates draws further subsequent investment in particular regions due to cheaper access to existing suppliers and buyers.³ This idea is not entirely new. Previous studies have - ¹ Also, refer to Arauzo-Carod et al. (2010) for an extensive survey of empirical studies on location decisions of firms including MNEs. ² In our dataset, the total number of Japanese MNE affiliates in China accounts for around 40% of total Japanese FDI worldwide. ³ The importance of input-output (I-O) linkages in location choices of firms is highlighted by the New Economic Geography (NEG) models. Venables (1996) originally provided the theory of the interplay between vertically related industries and the forces of dispersion in the core-periphery economic structure. Subsequent work by Amiti (2005) considered vertically related industries under the conditions of various transportation costs and country asymmetry due to relative factor endowments. When industries are linked through an I-O structure, the downstream industry forms the market for upstream firms. To lower transportation costs, upstream firms are drawn to locations where there are relatively many downstream firms (backward linkages). Forward linkages suggest that a larger number of upstream firms located in one region can benefit downstream firms, which can tried to capture forward and backward industry linkages using I-O tables of a host country (Amiti and Javorcik, 2008) or a home country (Debaere et al., 2010), industrial groupings such as Japanese *keiretsu* (Head et al., 1995, 1999; Belderbos and Carree, 2002; Blonigen et al., 2005), or financial dependence (Mayer et al., 2010). However, these studies only explored the agglomeration effects of an immediate industrial relationship (what we term here as 'first-tier' linkages). We go much further. By capitalising on a unique feature of Tokyo Shoko Research (TSR) database, we identify the co-location of the first, second, and third tiers of multinational suppliers and customers, based on actual transaction-based records of *inter-firm* linkages. In this paper, we ask the following questions: how pervasive are the agglomeration effects by MNEs beyond the first-tier linkages? Do these effects vary at different tiers of inter-firm agglomeration? How do these results compare with those obtained from standard agglomeration measures? It is important to consider the multiple layers of inter-firm linkages in the literature pertaining to MNE location decisions for the following reasons. First, such consideration can provide a much richer interpretation of the agglomeration effects of MNEs. As discussed by Mayer et al. (2010), the standard agglomeration variable for the stock of MNE affiliates operating in the same industry in a location can be quite broad since it represents various localisation economies. Our analysis considers both inter-firm backward linkages—the focus of previous studies—as well as the 'thickness' of the forward linkages. We find that the latter effect exerts comparatively stronger agglomeration effects. To our knowledge, only Debaere et al. (2010) considered both forward and backward linkages, although they used I-O tables. Additionally, our analysis shows that positive agglomeration externalities by inter-firm linkages are not pervasive and do not extend to the second and third tiers. Secondly, we can assess the relative strength of agglomeration effects in each layer—a first for a study of this kind. Our analysis finds new evidence of *negative* agglomeration externalities generated by the existence of third-tier suppliers in a location. This suggests that MNEs tend to avoid the same locations once the number of related input suppliers increases to 'too many'. However, no such effect was found for the agglomeration of related customers. obtain the intermediate inputs more cheaply by saving on transportation costs due to a large variety of differentiated inputs and more intense competition in upstream markets. These two vertical linkage effects motivate vertically related industries to cluster geographically. The next section introduces our method for the
measurement of agglomeration by inter-firm backward and forward linkages. Section 3 describes the empirical implementation and the dataset used for the regression analysis. Section 4 discusses the results, and Section 5 concludes. #### 2. Agglomeration of inter-firm linkages We employ the unique feature of the TSR database, which contains transaction information concerning inter-firm linkages among Japanese firms (Nakajima et al., 2012). Section 3 provides detailed data descriptions. The basic idea is that we extract information of inter-firm linkages (such as which particular firm is linked with other firms through transactions concerning purchase and supply of outputs and inputs in vertical production chains forged in Japan) and then merge this information with FDI location choice data. In this way, we are able to track whether a supplier, for example, follows its customers by locating its foreign affiliate in the same location in a host country (known as the 'following-the-leader' type of FDI). Presumably, location decisions of MNEs are influenced by the availability of intermediate input suppliers (backward linkage) and primal customers for their outputs (forward linkage) in a particular location/industry. The original TSR file provides comprehensive coverage of inter-firm linkages with a maximum of 24 suppliers and customers for each individual Japanese firm. The TSR data traces, for example, a list of suppliers providing auto parts to the *Toyota Corporation* as well as a list of customers for *Toyota*'s outputs in the company's production chain. Inter-firm linkages extend within and across industries. This, of course, corresponds to traditional industry backward and forward linkages, but our measure captures this at the firm level. We use the original list to start tracing inter-firm linkages beyond the first-tier relations. To explain the procedure, Figure 1 illustrates the hypothetical case of inter-firm forward linkages by Firm A supplying her outputs to Firms B and C, thus completing the first-tier transaction. We define Firms B and C as the first-tier customers from the viewpoint ⁴ TSR is Japan's credit reporting agency. It provides originally collected firm-level information pertaining to Japanese firms, for the purposes of corporate analysis. It also has a partnership with Dun and Bradstreet (D&B). However, to our knowledge, inter-firm linkages are not recorded in the worldwide version of the D&B database (Alfaro and Charlton, 2009). ⁵ Naturally, for the purposes of our study, we only consider those suppliers and customers that have made FDI in China. of Firm A. When Firms B and C supply their outputs to other firms, we denote the latter as the second-tier customers from the viewpoint of Firm A. We only define production chains in a unidirectional way. For example, as the dashed arrow indicates in Figure 1, if Firm B also supplies to Firm C, we treat this as a new industrial linkage from the viewpoint of Firm B, with Firm C being the first-tier customer, and Firm A, the first-tier supplier. We repeat this exercise up to the third-tier linkages. Likewise, we define inter-firm backward linkages by identifying suppliers. ### Figure 1 here Next, we sum up related suppliers and customers of different production in the same tier in a location to form agglomeration variables. It is crucial to note our algorithm for choosing firms to be scrutinised to alleviate the simultaneous location choices between the MNE's own affiliates and related affiliates. Consider Figure 1 once more. If, for example, Firm A established its affiliate in the year 2000, then we only count Firms B and C as related customers, as long as they had established their affiliates *before* 2000. In this way, we ensure a consistent unidirectional flow of production chains. When we move on to production chains from the viewpoint of Firm B, we drop Firm A, and then, we look at the establishment year of Firm C. More formally, the following inter-firm forward linkages (*FFL*) measure (Eq. 1) agglomeration of MNE a with location p invested in time t, by all related invested MNE affiliates (customers) c in time s. (1) $$FFL_{apt}^{g} = \sum_{c} D_{cps}^{g} \quad \text{where} \quad g \in \{1, 2, 3\}, \ s < t$$ where D represents a dummy variable equal to one for all related MNE affiliates c in location p created in year s, belonging to the g-th tier forward linkage from the viewpoint of MNE i. Similarly, we construct a measure of inter-firm backward linkages (denoted as FBL) using counts of all related MNE affiliates (suppliers) in the g-th tier in the same location p at time s. It is useful to point out the various strengths and limitations of our approach compared to previous studies. First, an inspection of a list of the first-tier relations reveals that most of ⁶ The use of plant counts is standard in literature pertaining to FDI locations, while employment in plants is more frequently used in studies of regional and urban economics. The latter typically includes data of a much finer classification, including the numbers of manufacturing plants across various geographical locations. the relationships observed among related suppliers and customers extracted from the TSR data are similar to those reported in the Japanese industrial grouping *keiretsu*. Head et al. (1995, 1999), Belderbos and Carree (2002), and Blonigen et al. (2005) have already presented evidence for strong agglomeration effects generated within *keiretsu* groups. However, our agglomeration measures extend inter-firm relationships further, to the second and third tiers, which are not recorded for *keiretsu* group members. In addition, a *keiretsu* variable is usually confined to the relationship of vertically related supply firms (like the case of several major automobile manufacturers with associated auto input suppliers and electronics firms), whereas we also include the inter-firm relationships of purchasing firms. As an illustration, Table 1 presents an example of actual inter-firm linkages of Toyota Motors, whose first affiliate in China was located in the Tienjin province in 1997. Table 1a shows the number of related suppliers⁷ from the first to the third tier in all provinces. Table 1b breaks down information for first-tier suppliers, with an indication of whether the supplier belongs to Toyota's *keiretsu*. It seems that Tienjin province exerts strong agglomeration effects, because all three suppliers in the first tier belong to Toyota's *keiretsu* (Table 1b). #### Table 1 here Second, the inter-firm linkages in the TSR data do not show actual commodity flows with associated monetary values. This means all related suppliers and customers are treated unrealistically as being equally important. This differs from the data used by Holmes and Stevens (2012), namely, the values of commodity flows among U.S. establishments, sourced from the Commodity Flow Survey (CFS) of the U.S. Census Bureau. However, we are not concerned about how important each individual supplier and customer is in relation to the location decision. Rather, we are more interested in the *relative importance* of clustered suppliers and customers in relation to location choices of MNEs. We can also reasonably assume that as we go further down (up) the layers of inter-firm transactions after the first tier, lesser agglomeration effects would be generated. Hence, each layer should indicate the relative strength of I-O relationships. In addition, for our purpose, the unit of an investigation _ ⁷ Note that we have concerned ourselves with suppliers only, because Toyota is primarily an assembler. at the firm level is more appropriate, because all FDI decisions are made at the firm level rather than at the establishment level. Third, inter-firm linkages are only considered for parent firms of a home country. This assumes that the same level of a technology and input requirements are carried over from parent firms of MNEs into their foreign affiliates. This is reasonable since an array of case study-based evidence, such as Moran (2011), suggests that foreign affiliates in a host country implement a similar technology to that employed in the home country. In fact, there is evidence to suggest that Japanese MNEs (JMNEs) tend to replicate similar production chains both at home and in host countries (Belderbos and Sleuwaegen, 1996). More significantly, Barrios et al. (2011) also showed that I-O relations of a home country provide a closer approximation of sourcing behaviours of foreign affiliates than those of a host country. Fourth, according to an analyst at TSR, inter-firm linkages only reflect the latest actual transaction information, which is constantly updated based on the more recent fieldwork surveys and follow-ups. This means that the time dimension of inter-firm linkages is defined at the time the data is accessed. Accordingly, we assume inter-firm linkages are fixed during the period under study. However, it is well known that inter-firm relations in Japanese manufacturing remain relatively stable for a number of years, in fact, even as far as 10–15 years (Asamura, 1989). Also, note that studies using I-O tables at one point in time over log time intervals have made similar assumptions by arguing that the I-O relationship changes slowly over time (Mayer et al., 2010). ## Agglomeration of industry linkages Following previous studies (e.g. Head et al., 1995; Crozet et al., 2004; Debaere et al., 2010), we also introduce agglomeration measures within industry as well as industry linkages. Agglomeration measures within an industry in a location take two forms: the number of JMNE affiliates and the number of Chinese manufacturing plants. In line with the literature, we take into account of neighbouring agglomeration effects by computing the distance- ⁸ Also see Yamashita (2010) for a detailed discussion of the link between Japanese parent firms and their foreign affiliates. ⁹ We purchased the TSR data in
2010. weighted count of plants.¹⁰ The agglomeration measure with the number of JMNEs (NJ) in a province p within industry i at time of investment t can be expressed by the following expression: (2) $$WI_{ipt} = NJ_{ipt} + \sum_{p \neq m} \frac{NJ_{imt}}{d_{mp}}$$ where d represents the bilateral distance between capital cities of provinces p and m. Eq. (2) suggests that WI will be higher if more JMNE affiliates exist in province p as well as the number of JMNE affiliates in nearby provinces, discounted by the relative distance to p. Alternatively, NJ can be replaced with the number of Chinese plants (NC) to reflect within-industry local agglomeration. Additionally, similar to Debaere et al. (2010), we capture the industry-linkage dimension of agglomeration effects using the I-O tables of both the home country (Japan) and the host country (China). The Japanese I-O table is used to measure the agglomeration effects of industry backward linkages (BL) and forward linkages (FL), combined with the number of existing JMNE affiliates (NJ) in a location. At the same time, the Chinese I-O table is combined with the count of Chinese manufacturing plants in a region to capture the thickness of linkages to local industries (i.e. the availability of local suppliers and customers). ¹¹ Presumably, the location decisions of MNEs are influenced by the availability of intermediate input suppliers (backward linkage) and primal customers for their outputs (forward linkage) in a particular location/industry. They are typically computed by constructing appropriate industry weights (a technical coefficient), as seen below. (3) $$W_{kj}^{B} = \frac{\text{inputs}_{k \leftarrow j}}{\text{total inputs}_{k}} \quad \text{and} \quad W_{kj}^{F} = \frac{\text{outputs}_{k \rightarrow j}}{\text{total outputs}_{k}}$$ W_{kj}^{B} is the share of inputs that industry k purchases from industry j in the total input purchases by industry k (superscript B indicates backward linkages). Conversely, W_{kj}^{F} is the share of ¹⁰ Note that the distance-weighted measures apply only to industry-level variables. They are not applicable to inter-firm agglomeration variables, because they have no variations within a location choice, thus making it impossible to estimate them. ¹¹ As mentioned in Debaere et al. (2010), we assume that a linkage with the local economy is reflected in the Chinese I-O table, though the count of plants in provinces may also include non-Chinese manufacturing plants. outputs produced by industry k that are purchased by industry j from the total outputs produced by industry k (superscript F indicates forward linkages). Based on these two sets of industry weights, the following industry backward (BL) and forward agglomeration (FL) variables can be constructed in the case of JMNEs: $$BL_{kpt} = \sum_{k,j} (W_{kj}^B \cdot NJ_{jpt})$$ and $FL_{kpt} = \sum_{k,j} (W_{kj}^F \cdot NJ_{jpt})$ These variables correspond to the weighted sums of the number of existing JMNE affiliates (NJ) in industry k in location p at the point of time t. The same formula can be applied in the case of Chinese plants (NC). We also take the neighbouring effects into account by using relative distance. A variable for distance-weighted backward linkages (WBL) with JMNE affiliates (NJ) is as follows: $$WBL_{kpt} = BL_{kpt} + \sum_{k,j} W_{kj}^{B} \sum_{p \neq m} \frac{NJ_{imt}}{d_{mp}}$$ Distance-weighted forward linkages (WFL) can be constructed in a similar way. In sum, we have two sets of within-industry agglomeration measures by Eq. (2) and four sets of inter-industry (backward and forward) linkage agglomeration measures for JMNE affiliates (*NJ*) and Chinese plants (*NC*). #### 3. Empirical implementation and data We are primarily interested in identifying how regional variations of agglomeration influence an MNE's choice to locate its first affiliates within China. We focus on the location decisions of first-time investors, because various locational attributes are perceived to be fixed at the time of investment. First, we implement the conditional logit model, which has been widely used since Head et al. (1995), for the problem of MNE location choice. The basic assumption of the model is that a firm (MNE) will choose to locate in the most profitable location, taking into account any positive externalities it can expect to receive (e.g. Japanese auto part suppliers are likely to locate near auto assembly plants) and other regional-specific attributes, such as the size of local demand and labour costs.¹² Basically, while we follow the standard model (e.g. Head et al., 1995; Debaere et al., 2010), we use different notations to customise the problem. Suppose that an underlying profit function for an MNE affiliate a choosing location p takes the following general form (for the time being, we omit an industry subscript). (4) $$\pi_{\rm apt} = \theta_p + A_{aipt}\alpha + Z_{\rm pt}\beta + \varepsilon_{\rm apt}$$ where Z_{pt} is a vector of location-specific attributes varying by year of investment by MNE a, and θ_p denotes the time-invariant fixed effects of location attributes. If an MNE a selects a location p, then π_{ap} should be the highest among all alternative p choices. By assuming the type I value distribution in the error term in Eq. (4), the probability of MNE a choosing location p is expressed (without a time script t) as follows: (5) $$\Pr(a \text{ locates in } p) = \frac{\exp^{\theta_p + A_{aip}\alpha + Z_p\beta}}{\sum_{m} \exp^{\theta_m + A_{aim}\alpha + Z_m\beta}}$$ This can be estimated by the maximum likelihood estimation. The most significant issue for the conditional logit estimation is the possible violation of the independence of irrelevant alternatives (IIA) assumption. The inclusion of the regional-specific effect, θ_p , in Eq. (4) provides a partial remedy, since it absorbs region-specific unobserved components in a profit equation. Further, we take the following approaches. First, we implement the mixed logit model estimation, which has been successfully applied in recent studies of the location choice problem by MNEs (Defever, 2006, 2012; Basile et al., 2008). This essentially allows for values of β with a subscript z to be random parameters, stemming from the heterogeneity of location choosers in Eq. (4). This can be expressed with the elements of the mean and deviation of β_z (note that in the case of the conditional logit model, the coefficients are fixed). Essentially, this allows the unobserved MNE affiliate characteristics to be correlated with the regional characteristics (Train, 2009). Second, we ¹² More formally, when the production function of a firm is assumed to follow the Cobb-Douglas form, agglomeration externalities coupled with production inputs will affect the plant's output and profitability in a multiplicative way. In this case, the expected profitability in location can be expressed as a log-linear function of variables of the agglomeration effects and other locational attributes (Head et al., 1995). ¹³ In the usual language of the mixed logit model, unobserved characteristics refer to heterogeneous taste parameters. As explained by Train (2009), while there are two interpretations of the mixed model, they may be report the results with the sub-samples by removing some regions or some groups of investors from the choice sets, to check the resilience of estimations. If the results remain unchanged even in the sub-samples, we can reasonably conclude that the IIA problem is not a matter of concern in our context (Head et al., 1995).¹⁴ At most, we have three sets of agglomeration variables: inter-firm backward and forward linkages (FBL and FFL), industry backward and forward linkages (WBL and WFL), and within-industry agglomeration measures (WI). Since each agglomeration measure captures different aspects of agglomeration elements, we try several specifications by including/excluding those agglomeration measures. Other elements of regional attributes, Z_{pt} , in Eq. (4), include regional-specific manufacturing wages, market size, and policy incentive indicators. Market size at the province level are captured by the 'Harris' type of market potential (MP). This indicator is constructed in a fashion similar to Eq. (2), but using Gross Regional Products instead. As a proxy for a policy incentive indicator, we use the number of Special Economic Zones and Open Coastal Cities by province (Economic Zones). In the end, a fuller version of Eq. (4) can be written as follows: (6) $$\pi_{\text{apt}} = \theta_p + \sum_{g = \{1, 2, 3\}} \alpha_{1g} \ln FFL^g + \sum_{g = \{1, 2, 3\}} \alpha_{2g} \ln FBL^g + \sum_{\{NJ, NC\}} \alpha_3 WI + \sum_{\{NJ, NC\}} \alpha_4 WFL + \sum_{\{NJ, NC\}} \alpha_5 WBL + Z_{\text{pt}} \beta + \varepsilon_{\text{ipt}}$$ The most important coefficients are α_1 and α_2 , which indicate the degree of agglomeration effects by inter-firm backward and forward linkages, while we control for other industry-level agglomeration effects. #### **Data description** formally considered as equivalent. However, it appears to us that the treatment of the mixed logit model in Basile et al. (2008) provokes an interpretation of 'error components', and that in Defever (2006, 2012), of the 'random coefficient'. ¹⁴ In other words, this is a test of whether the ratio of probabilities of any two chosen alternatives is independent of all other alternatives. ¹⁵ Another practical reason for doing this is that industry-level agglomeration variables show high correlations among themselves. The main data is created by merging inter-firm linkages extracted from the TSR data with Japanese FDI data from *Overseas Japanese Companies Data* published by Toyo Keizai (TKZ).¹⁶ We refer to the main data as the TSR-TKZ dataset. First, the sample of Japanese firms is confined to all Japanese manufacturing firms listed on the stock exchange in the TSR data (4,719 firms). Second, after extracting all
inter-firm linkages by the procedure described in section 2, these firms are matched with the 2009 edition of the TKZ dataset, including the location of MNE plants across Chinese provinces with the 12 2-digit industry classifications, the year of establishment (since 1982), and the capital ownership ratio. At this stage, Japanese firms extracted from the TSR with no corresponding affiliates in China are excluded even if they have inter-firm linkages. As explained before, we only focus on the location choices of the first MNE plants between 1995 and 2007, although some MNEs have multiple plants established at several locations in China at different times. These filters reduce the number of location choosers down to 807 firms. The cumulated number of JMNE affiliates at the industry level is sourced from the TKZ dataset and the *Global Reference Solution Database* (GRS) published by Dun and Bradstreet (D&B). ¹⁷ Counts of JMNE affiliates in Chinese provinces from the GRS are available from the 4-digit Standard Industrial Classification (SIC) System. We convert these into the 12 industry classifications in our main database. The key difference between the two data sources lies in the starting point of data recording for the entry of JMNE affiliates; 1992 for the GRS and 1983 for the TKZ. Therefore, the TKZ dataset covers a longer time period of history of Japanese investments in Chinese provinces for the same industry. However, we acknowledge that relying on a single database for measuring firm-level agglomeration, within an industry and inter-industry, may not be prudent. Hence, the GRS data is our preferred choice for industry-level agglomeration. However, both databases suffer from a common drawback: we do not have information for any affiliate exits. Once created, the agglomeration measures of JMNE affiliates kept adding up until the year 2007. We use I-O tables from Japan and China for construction of industry-level agglomeration. The Japanese I-O table is sourced from the *Japan Industry Productivity* ¹⁶ The TKZ data is one of the most frequently used data sources for analyses concerning Japanese FDI (see Head et al., 1995; Belderbos and Carree, 2002). ¹⁷ The GRS database is one of the commercial data products that form part of the *WorldBase* database of D&B. Alfaro and Charlton (2009) also employed the GRS database. Database (Research Institute for Economy, Trade, and Industry). We aggregate the matrix of 108 industries for 2007 into 12 2-digit industry classifications, in order to be consistent with the TKZ data. ¹⁹ The corresponding Chinese I-O table, provided by the Chinese Statistical Bureau, is also of the 2007 edition and contains a matrix of 12 industry flows. The annual average of the number of Chinese manufacturing plants and wages by province and industry are obtained from various years of the China Manufacturing Statistical Yearbook and the China Labour Statistical Yearbook, respectively. Gross regional domestic products (GRP) are sourced from various years of the Chinese Statistical Yearbook. Bilateral distances between provinces are calculated with the longitudes and latitudes of each province's capital city. We obtained the number of economic zones, including technology and industry development zones and export processing zones, from Table 2A.2 of Wang and Wei (2010). #### 4. Results Table 3 reports the results by the conditional logit model and the mixed logit model in columns (1)-(3) and columns (4)-(6), respectively. Appendix Table A1 presents summary statistics of the key variables used in regressions and a correlation matrix shown in Table A2. The table shows some variations from the full model in Eq. (6). In column (1), we have interfirm backward and forward agglomeration variables from the first to the third tier, together with within-industry agglomeration measures and regional fixed effects. While agglomeration variables, coupled with the within-industry agglomeration variable of JMNEs by first tier suppliers and customers, turn out to generate positive effects, this is not so for agglomeration variables by within-industry Chinese plants. This indicates that the location decisions of JMNEs are predominantly influenced by pre-existing locations of strongly linked JMNE affiliates as well as the general agglomeration of Japanese firms. We also note that, compared to backward linkages, inter-firm forward linkages show much stronger agglomeration effects in terms of magnitude (this seems to be the case for all remaining regressions). From the estimated coefficients, we can easily interpret the average probability elasticity in the conditional logit model (Head et al., 1995). The results in column (1) indicate that a 10% ¹⁸ Available at: http://www.rieti.go.jp/en/database/JIP2012/index.html#04-1. ¹⁹ It is standard practice to use a single year I-O table by assuming that a technical coefficient does not vary during the period under study. ²⁰ This can be computed by the estimated coefficient multiplied by (S-1)/S, where S stands for the number of alternative location choices (22 provinces in our case). increase of the number of first-tier JMNE suppliers would lead to a 2% increase in the probability of a location being chosen by subsequent Japanese investors, whereas the agglomeration effect of first-tier customers is around 3.6%. Intuitively, this may mean that location choices by Japanese investors are relatively more influenced by the existence of relevant customers for their outputs in a location. This finding is indeed a generalisation of a study by Smith and Florida (1994), which showed that the location of large Japanese automobile assembly plants (customers) in U.S. states prominently drew subsequent investors of auto part suppliers to the same states. Our results further show that the desire to serve customers is relatively stronger than the desire to co-locate closer to suppliers. More interestingly, the estimated coefficient of agglomeration by third-tier suppliers shows a negative sign with 1% statistical significance in Table 3. This suggests that agglomeration of inter-firm linked suppliers beyond the first tier can actually reduce the probability of a location to be chosen by subsequent Japanese investors. We offer the following interpretation: As the density of economic activities of JMNEs in a location increases, the congested location increasingly becomes an unattractive place to invest. This is because the demands for factors of production (e.g., specialised and technical workers or intermediate inputs) increase resulting in increased production costs at this location and eventually lower profits. Hence, rising factor prices in a congested location become a countervailing factor, reducing the agglomeration benefits discouraging co-locations of subsequent investments. This makes sense especially if the location choosers are predominantly suppliers themselves. Perhaps, prior to 1995 major assembly manufacturers are already located in the Chinese provinces, making the subsequent investors are the following suppliers. This 'centrifugal' force (or the congestion costs) is an interesting aspect of inter-firm agglomerations, since the literature as a whole is only confined to find the positive agglomeration externalities. ²¹ However, at the same time the third-tier supplier effects may be picking up some sort of the strategic intentions while our framework abstracts from such strategic interactions. Because of the way inter-firm agglomeration variables constructed, the third tier might include suppliers who are direct competitors (but indirectly related) to the choosers. In order to discount unrelated suppliers as many as possible, we will ⁻ ²¹We should also add that a previous study found that the congestion effects indeed have the negative externalities on the plants' productivity (Martin et al. 2011). This is interpreted as the non-linear relations between plant productivity and agglomeration: once reaching the upper threshold of agglomeration, further clustering will bring about the congestion externalities on plant productivity. implement the alternative measure of inter-firm agglomerations using input-output table below. Column (2) introduces a set of region-specific variables, instead of region fixed effects. The first notable change is that a coefficient for within-industry agglomeration of Chinese plants turns to a positive sign with a 5% statistical significance, whereas it was not statistically different from zero in column (1). Regional-specific variables (market potential and manufacturing wages) show marginal impact on the probability of location decisions. This could be a result of agglomeration variables capturing various localisation economics. In column (3), we add an industry linkage dimension of agglomeration to the model in column (1). Consistent with Debaere et al. (2010), we find that location choices of JMNEs are prominently driven by the availability of industry linkages along the same nationality (that is, with other JMNEs) and not with the local Chinese industries.²² Again, we find that forward industry linkages with other JMNE affiliates are much more important than backward linkages. We continue to use the mixed logit model in columns (4)-(6).²³ Overall, the results in the conditional logit model remain resilient. That is, we observe that while subsequent investments by JMNEs are prominently influenced by the agglomeration of first-tier suppliers and customers, these effects are not pervasive; at higher tier levels, supplier effects reduce the probability of a location to be selected by subsequent Japanese investors. While recent applications of the mixed logit model have proven it to be a powerful estimator capable of tackling the IIA problem (e.g. Defever 2006, 2012; Basile et al., 2008), we still believe that further checks by using sub-sample sets can be equally useful (Head et al., 1995; Debaere et al., 2010). In Table 4, we exclude three
municipalities (Beijing, Tianjin, and Shanghai) from column (1), three Northeast provinces (Jilin, Liaoning, and Heilongjiang) from column (2), and Jiangsu (a province with the largest share of regional distributions of JMNE affiliates in Table 2) from column (3). Alternatively, we retain the full choice sets, but we exclude the automobile and electronics industries in columns (4) and (5). The location decisions of JMNEs in these two industries are eliminated, because they are usually characterised with an ²² Although not indicated in Table 3, it is important to note that when we run experimental regressions with a variable of inter-industry linkages using only the Chinese I-O table, the linkage variables with Chinese industries are found to be positive and statistically different from zero. As soon as Japanese I-O information is included, these linkage variables become insignificant. ²³ Note that Table 3 does not report the estimated standard errors. extensive coverage of vertical production processes. Again, the overall results generally remain unchanged, which is an encouraging sign from the viewpoint of the IIA assumption. Even in the limited choice sets, with the exception of column (3), we continue to observe strong agglomeration effects by first-tier suppliers and customers of JMNEs. Further supplier agglomeration in the third tier seems to reduce the probability of a location being chosen, as seen in Table 3. However, the first-tier supplier effect, in columns (3)-(5), becomes statistically insignificant, while the first-tier customer effect remains strong. The location decisions of many JMNE affiliates in the automotive and electronic industries (and their concentration in Jiangsu province) are overwhelmingly influenced by the existence of their first-tier suppliers in particular regions. This could be a result of earlier Japanese assembly factories from these industries having established themselves in China, followed by subsequent component suppliers. Further agglomeration becomes a countervailing factor for location choices of subsequent Japanese investors. Table 2 here Table 3 here Table 4 here # Alternative measure of inter-firm agglomerations²⁴ We implement the alternative measure of inter-firm agglomeration by combining information from the Input-Output table with the actual number of suppliers and customers identified at firm-level. More specifically, firm-level agglomeration variables at each layer (e.g., going from first to second, second to third tier) are weighted by cross-industry flows of the commodity in Eq. (3) both backward and forward linkages. For an illustration, Figure 2 shows the weighted measure of forward linkages (FFL) in the case of a two-tier transaction, which has been simplified from Figure 1: a transaction between Firm A and B is represented by *inter-industry* output flows from Firm A to B (shown in Eq. (3)) – the proportion of output selling Firm B to total outputs of Firm A (W_{ij}) and likewise Firm B's output flows to Firm D (W_{jk}) (a second-tier customer from the viewpoint of Firm A). They are summed across all _ ²⁴ We thank a referee for suggesting this robustness check. related MNE affiliates in location p at time s. More formally, the alternative measure in the case of the second tier (g=2) can be written as follow; (7) Weighted $$FFL_{apt}^{g=2} = \sum_{c} w_{ij}^{F} w_{jk}^{F} D_{cps}^{g=2,ijk}$$ #### Figure 2 here This means that more weight is now placed on the transaction relations if more inter-industry flows of the commodity are recorded in Input-Output table (eg, higher weight). In this way, the measure contains information of the degree of backward and forward linkages moderated by the number of related firms in each tier. We hope that the inclusion of the degree of input-output relations into firm-level agglomeration measures discount relatively unimportant suppliers and customers and give more weight to more important suppliers and customers. At the same time, this weighting scheme may counterbalance to the simply count of second and third suppliers and customers. Information on inter-industry flows of transactions is extracted from input-output table stored in the Japan Industry Productivity Database. The results are presented in Table 5. The main message is still unchanged with the positive externalities in the first-tier suppliers and customers for the location choices, even if input-output information included. The point estimate in column (1) of Table 5 suggests that a 10% increase of the number of suppliers moderated input-output information would lead to about 2.5% increase in the probability of the same location to be chosen by the subsequent investors. Similarly, the agglomeration effects by the first-tier customers (forward linkages) exert the larger effects. However, beyond the first tier the positive agglomeration effects disappear with no statistical significance found. As before, the negative agglomeration externalities of the third-tier suppliers can be observed with the similar magnitude of the estimated coefficient with a 1% of statistical significance. Hence, the alternative measure also confirms the congested effects detected in third-tier supplier effects. #### Table 5 here #### 5. Conclusion There is an emerging consensus that the location decisions of MNEs are self-reinforcing in nature, in the sense that subsequent investors are drawn to a location where many MNE affiliates (of the same nationality) from the same industry or from vertically related industries agglomerate. By extending this line of inquiry, we consider the agglomeration effects of *inter-firm* backward and forward linkages, using the case of first-time Japanese manufacturing investments across 22 Chinese provinces between 1995 and 2007. Both the conditional logit and the mixed logit estimates revealed strong agglomeration effects exerted by first-tier suppliers and customers. The latter effect leads to a higher probability of a particular location being selected by subsequent investors in China. This is consistent with the view that JMNEs like to replicate similar production chains that exist in Japan in a host country. At the same time, it was found that such agglomeration effects were short-lived and did not have any pervasive effects further down or up a vertical production chain. In fact, we found that agglomeration effects by third-tier suppliers actually lowered the probability that a location is selected by subsequent investors. We interpreted this as the increasing number of related suppliers making a location unattractive due to the rise in competition and increasing costs of factors of production and labour wages. All in all, our measures of inter-firm agglomeration allow for a more detailed and nuanced interpretation of agglomeration effects attributable to MNEs. These main results, nevertheless, need to be interpreted with a caution. The current form of inter-firm agglomeration, even with an adjustment made using the Input-Output Table, may be exaggerating agglomeration by including unrelated MNE affiliates. For the future project, we would like to work to improve this measure. #### References - Alfaro, L. and A. Charlton. (2009) 'Intra-industry foreign direct investment', *American Economic Review*, 99(5): 2096-2119. - Amiti, M. (2005) 'Location of vertically linked industries: Agglomeration versus comparative advantage', *European Economic Review*, 49(4): 809-832. - Amiti, M. and B. Javorcik (2008) 'Trade costs and location of foreign firms in China', *Journal of Development Economics*, 85: 129-149. - Aruzo-Carod, D., Liviano-Solis and M. Manjon-Antolin (2010) 'Empirical studies in industrial location: an assessment of their method and results', *Journal of Regional Science*, 50(3): 685-711. - Asamura, B. (1989) 'Manufacturer-supplier relationships in Japan and the concept of relation-specific skill', *Journal of the Japanese and International Economies*, 3(1): 1-30. - Barrios, S., H. Görg and E. Strobl (2011) 'Spillovers through backward linkages from multinationals: Measurement matters!', *European Economic Review*, 55(6): 862-875. - Basile, R., D. Castellani and A. Zanfei (2008) 'Location choices of multinational firms in Europe: The role of EU cohesion policy', *Journal of International Economics*, 74: 328-340. - Belderbos, R. and L. Sleuwaegen (1996) 'Japanese Firms and the decision to invest abroad: Business groups and regional core networks', *The Review of Economics and Statistics*, 78(2): 214-220. - Belderbos, R. and M. Carree (2002) 'The location of Japanese investments in China: Agglomeration effects, *Keiretsu*, and firm heterogeneity', *Journal of the Japanese and International Economies*, 16: 194-211. - Blonigen, B. A., C. J. Ellis and D. Fausten (2005) 'Industrial groupings and foreign direct investment', *Journal of International Economics*, 65: 75-91. - Chang, K., K. Hayakawa and T. Matsuura (2013) 'Location choice of multinational enterprises in China: Comparison between Japan and Taiwan', *Papers in Regional Science* (forthcoming). - Crozet, M., T. Mayer and J. Mucchielli (2004) 'How do firms agglomerate? A study of FDI in France', *Regional Science and Urban Economics*, 34: 27-54. - Debaere, P., L. Joonhyung and M. Paik (2010) 'Agglomeration, backward and forward linkages: Evidence from South Korean investment in China', *Canadian Journal of Economics*, 43(2): 520-546. - Defever, F. (2006) 'Functional fragmentation and the location of multinational firms in the enlarged Europe', *Regional Science and Urban Economics*, 36, 658-677. - Defever, F. (2012) 'The spatial organization of multinational firms', *Canadian Journal of Economics*, 45(2): 672-697. - Ellison, G., E. Glaeser, W. Kerr (2010) 'What causes industry agglomeration? Evidence from coagglomeration patterns', *American Economic Review* 100: 1195-1213. - Guimarães, P., O. Figueiredo and D. Woodward (2000) 'Agglomeration and the location of foreign direct
investment in Portugal', *Journal of Urban Economics*, 47(1): 115-135. - Head, K. and J. Ries (1996) 'Inter-city competition for foreign investment: Static and dynamic effects of China's incentive areas', *Journal of Urban Economics*, 40: 38-60. - Head, K., J. Ries and D. Swenson (1995) 'Agglomeration benefits and location choice: Evidence from Japanese manufacturing investments in the United States', *Journal of International Economics*, 38: 223-247. - Head, K., J. Ries and D. Swenson (1999) 'Attracting foreign manufacturing: Investment promotion and agglomeration', *Regional Science and Urban Economics*, 29: 197-218. - Holmes, T. J. and J. Stevens (2012) 'Exports, borders, distance, and plant size', *Journal of International Economics*, 88(1): 91-103. - Martin, P., T. Mayer and F. Mayneris (2011) 'Spatial concentration and plant-level productivity in France', *Journal of Urban Economics*, 69(2): 182-195. - Mayer, T., L. Mejean and B. Nefussi (2010) 'The location of domestic and foreign production affiliates by French multinational firms', *Journal of Urban Economics*, 68: 115-128. - Moran, T. H. (2011) Foreign Direct Investment and Development: Launching a Second Generation of Policy Research, Washington, DC: Petersons Institute for International Economics. - Nakajima, K., Y. Saito and I. Uesugi (2012) 'Measuring economic localisation: Evidence from Japanese firm-level data', *Journal of the Japanese and International Economies*, 26(2): 201-220. - Roberto, B. (2004) 'Acquisition versus greenfield investment: The location of foreign manufacturers in Italy', *Regional Science and Urban Economics*, 34(1): 3-25. - Smith, D. and R. Florida (1994) 'Agglomeration and industry location: An econometric analysis of Japanese-affiliated manufacturing establishments in automotive-related industries', *Journal of Urban Economics*, 36: 23-41. - Train, K. (2009) Discrete Choice Methods with Simulation, Cambridge: Cambridge University Press. - Venables, A. J. (1996) 'Equilibrium locations of vertically linked industries', *International Economic Review*, 37(2): 341-359. - Wang, Z. and S–J. Wei (2010) 'What accounts for the rising sophistication of China's exports'? in *China's growing role in world trade*, eds. R. C. Feenstra and S–J. Wei (Chicago: University of Chicago Press). - Yamashita, N. (2010) International Fragmentation of Production: The Impact of Outsourcing on the Japanese Economy, Cheltenham: Edward Elgar. Table 1a: Distribution of the number of related suppliers across China for Toyota Motors, whose first affiliate in China was located in the Tianjin province in 1997 | State | First tier suppliers | Second tier suppliers | Third tier suppliers | Cumulated number of suppliers | Province adjacent to Tienjin? | Located along the coast? | |--------------|----------------------|-----------------------|----------------------|-------------------------------|-------------------------------|--------------------------| | Shanghai | 0 | 6 | 13 | 19 | | Yes | | Jiangsu | 3 | 3 | 13 | 19 | | Yes | | Guangdong | 0 | 3 | 14 | 17 | | Yes | | Liaoning | 0 | 2 | 10 | 12 | Yes | Yes | | Beijing | 0 | 2 | 7 | 9 | Yes | | | Tianjin* | 3 | 2 | 3 | 8 | | Yes | | Shandong | 1 | 1 | 4 | 6 | | Yes | | Zhejiang | 1 | 0 | 3 | 4 | | Yes | | Fujian | 1 | 0 | 3 | 4 | | Yes | | Hebei | 1 | 0 | 2 | 3 | Yes | Yes | | Hunan | 0 | 1 | 2 | 3 | | | | Shanxi | 0 | 2 | 0 | 2 | | | | Sichuan | 0 | 1 | 0 | 1 | | | | Guizhou | 0 | 1 | 0 | 1 | | | | Jilin | 1 | 0 | 0 | 1 | | | | Heilongjiang | 0 | 0 | 1 | 1 | | | | Jiangxi | 0 | 1 | 0 | 1 | | | | Hubei | 0 | 0 | 0 | 0 | | | | Hainan | 0 | 0 | 1 | 1 | | Yes | | Total | 11 | 25 | 76 | 112 | | | Note: The entries are sorted in the descending order of the cumulated number of related suppliers. In each province, this number refers to all related suppliers that existed before 1997, the year Toyota Motors located its first affiliate in Tienjin province. Note that only related suppliers are identified, since the Toyota plant is usually the final assembler. Source: TSR-TKZ data described in section 3. Table 1b: List of first-tier suppliers to Toyota Motors and locations of their affiliates and year of establishment in China | | | Number
of | Establishment year of | Toyota keiretsu? | |----------|---------------------|--------------|-----------------------|------------------| | State | Industry | employees | affiliates | | | Tienjin* | Transport equipment | 1,497 | 1995 | Yes | | Tienjin* | Transport equipment | 905 | 1994 | Yes | | Tienjin* | Transport equipment | 1,480 | 1996 | Yes | | Hebei | Transport equipment | 1,939 | 1996 | Yes | | Jilin | Rubber | - | 1992 | | | Jiangsu | Transport equipment | 292 | 1996 | Yes | | Jiangsu | Transport equipment | 555 | 1996 | Yes | | Jiangsu | Rubber | - | 1996 | | | Zhejiang | Transport equipment | 685 | 1995 | Yes | | Fujian | Transport equipment | 179 | 1995 | Yes | | Shandong | Transport equipment | 431 | 1995 | | Source: TSR-TKZ data described in section 3. The indicator for Toyota's *keiretsu* (see the final column in this table) is based on the TKZ data. Table 2: Regional distribution of Japanese MNE (JMNE) affiliates and Chinese manufacturing plants in Chinese provinces for the period 1995-2007 | Province | Chinese JMNE Regional manufacturing Coast? affiliates ¹ distribution plants ² | | | | | |--------------|---|-------|------|---------|------| | | | Units | % | Units | % | | East | | | | | | | Beijing | | 23 | 2.3 | 6,219 | 3.0 | | Tianjin | Yes | 51 | 5.1 | 5,569 | 2.7 | | Hebei | Yes | 18 | 1.8 | 9,163 | 4.4 | | Shanghai | Yes | 243 | 24.4 | 8,847 | 4.2 | | Jiangsu | Yes | 244 | 24.5 | 23,324 | 11.2 | | Zhejiang | Yes | 61 | 6.1 | 20,491 | 9.8 | | Fujian | Yes | 17 | 1.7 | 7,042 | 3.4 | | Shandong | Yes | 64 | 6.4 | 15,972 | 7.7 | | Guangdong | Yes | 163 | 16.4 | 18,132 | 8.7 | | Guangxi | | 2 | 0.2 | 4,009 | 1.9 | | Liaoning | Yes | 53 | 5.3 | 11,487 | 5.5 | | Hainan | Yes | | | 494 | 0.2 | | Centre | | | | | | | Shaanxi | | 1 | 0.1 | 3,873 | 1.9 | | Shanxi | | | | 3,617 | 1.7 | | Jilin | | 3 | 0.3 | 3,908 | 1.9 | | Anhui | | 6 | 0.6 | 7,004 | 3.4 | | Heilongjiang | | 2 | 0.2 | 4,786 | 2.3 | | Jiangxi | | 1 | 0.1 | 4,875 | 2.3 | | Henan | | 8 | 0.8 | 11,077 | 5.3 | | Hunan | | 6 | 0.6 | 7,682 | 3.7 | | Hubei | | 3 | 0.3 | 7,831 | 3.8 | | Neimenggu | | 3 | 0.3 | 2,527 | 1.2 | | West | | | | | | | Sichuan | | 17 | 1.7 | 11,139 | 5.3 | | Guizhou | | 1 | 0.1 | 2,305 | 1.1 | | Yunnan | | 1 | 0.1 | 2,083 | 1.0 | | Qansu | | | | 2,476 | 1.2 | | Qinghai | | | | 474 | 0.2 | | Ninghsia | | 3 | 0.3 | 641 | 0.3 | | Xinjiang | | | 0 | 1,515 | 0.7 | | TOTAL | | 994 | 100 | 208,560 | 100 | Source: China Statistical Yearbook (various years), TKZ (2009). Note: 1. Entries under this column refer to the cumulated number of first-time investments of JMNE affiliates between 1995 and 2008. ^{2.} Entries under this column refer to the average number of Chinese manufacturing plants between 1995 and 2008. Table 3: Location choices of first-time JMNE investors in China for the period 1995-2007 | | | Dependent variable: location choice | | | | | | | | | |--|--------------------------|-------------------------------------|---------|----------|----------|---------|----------|--|--|--| | | | Conditional logit | | | Mixed lo | | | | | | | | | (1) | (2) | (3) | (4) | (5) | (6) | | | | | | | | | | Mean | Mean | Mean | | | | | | Variation across: | | | | | | | | | | | Agglomeration by inter-firm forward or backward linkages | Firm, province, and year | | | | | | | | | | | First-tier FFL (Forward linkage by count of customers) | | 0.36*** | 0.38*** | 0.35*** | 0.41*** | 0.38*** | 0.35*** | | | | | | | [0.091] | [0.088] | [0.090] | [0.090] | [0.089] | [0.092] | | | | | Second-tier FFL | | 0.00 | 0.01 | -0.03 | 0.04 | 0.01 | -0.03 | | | | | | | [0.089] | [0.087] | [0.089] | [0.089] | [0.087] | [0.090] | | | | | Third-tier FFL | | -0.04 | -0.03 | -0.08 | -0.04 | -0.03 | -0.09 | | | | | | | [0.090] | [0.086] | [0.090] | [0.090] | [0.087] | [0.092] | | | | | First-tier FBL (Backward linkages by count of suppliers) | | 0.21* | 0.24** | 0.20* | 0.26** | 0.24** | 0.20* | | | | | | | [0.109] | [0.108] | [0.109] | [0.109] | [0.108] | [0.111] | | | | | Second-tier FBL | | 0.09 | 0.13 | 0.09 | 0.13 | 0.13 | 0.09 | | | | | | | [0.099] | [0.097] | [0.099] | [0.099] | [0.098] | [0.101] | | | | | Third-tier FBL | | -0.26*** | -0.22** | -0.25*** | -0.23** | -0.22** | -0.25*** | | | | | | | [0.092] | [0.089] | [0.093] | [0.093] | [0.089] | [0.095] | | | | | | Industry, | | | | | | | | | | | | province, and | | | | | | | | | | | Within-industry agglomeration | year | 0.12 | 0.01** | 0.00 | 0.15 | 0.00** | 0.10 | | | | | WI with NC (Count of Chinese plants) | | 0.12 | 0.21** | -0.09 | 0.15 | 0.23** | -0.10 | | | | | | | [0.114] | [0.103] | [0.319] | [0.120] | [0.107] | [0.325] | | | | | WI with NJ (Count of JMNE affiliates) | | 1.49*** | 1.09*** | 0.21 | 1.06*** | 1.11*** | 0.21 | | | | | | | [0.114] | [0.075] | [0.142] | [0.117] | [0.084] | [0.159] | | | | | _ | | (1) | (2) | (3) | (4) | (5) | (6) | |--|-------------------|--------|---------|---------|--------|---------|---------| | | Industry, | · / | , | , | · / | · / | · / | | | province, and | | | | | | | | Agglomeration by industry linkages | year | | | | | | | | WFL with NC (Forward linkages by Chinese plants) | | | | -0.44 | | | -0.34 | | | | | | [0.596] | | | [0.622] | | WBL with NC (Backward linkages by Chinese plants) | | | | 0.72 | | | 0.66 | | | | | | [0.525] | | | [0.542] | | WFL with NJ (Forward linkages by JMNE affiliates) | | | | 1.17*** | | | 1.14*** | | | | | | [0.322] | | | [0.336] | | WBL with NJ (Backward linkages by JMNE affiliates) | | | | 0.50 | | | 0.58* | | , | | | | [0.316] | | | [0.334] | | Region-specific variables | Province
and year | | | . , | | | | | Market potential (MP) | | | 0.29* | | | 0.29* | | | - | | | [0.170] | | | [0.170] | | | Manufacturing wages | | | 0.29* | | | 0.29* | | | | | | [0.168] | | | [0.169] | | | Economic zones | | | -0.10 | | | -0.10 | | | | | | [0.131] | | | [0.131] | | | Province dummy | | Yes | No | Yes | Yes | No | Yes | | Observations | | 17,710 | 17,710 | 17,710 | 17,710 | 17,710 | 17,710 | | Log-likelihood | | -1601 | -1657 | -1612 | -1646 | -1657 | -1611 | Note: We take log values for all variables except Economic Zones. Standard errors appear in parentheses. Statistical significance (two-tailed test): ***, **, and * imply statistical significance at the 1%, 5%, and 10% level, respectively. The 22 Chinese provinces make up the choice sets. Standard errors of the random coefficients are not shown, since most of them are not statistically significant. All variables also vary according to year of investments. Industry-level variables are distance-weighted. See section 2 for variable construction. Table 4: Sub-sample location choice sets by the conditional logit model | | Dependent variable: location choice | | | | | | | | |--|-------------------------------------|-----------|---------|------------|-------------|--|--|--| | | (1) | (2) | (3) | (4) | (5) | | | | | | Excluding: | | | | | | | | | | Municipalities | Northeast | Jiangsu | Automobile | Electronics | | | | | Agglomeration by inter-firm forward or backward linkages | | | | | | | | | | First-tier FFL (Forward linkage by count of customers) | 0.28** | 0.36*** | 0.43*** | 0.30*** | 0.35*** | | | | | | [0.118] | [0.094] | [0.109] | [0.102] | [0.101] | | | | | Second-tier FFL | 0.04 | -0.03 | -0.05 | -0.02 | -0.06 | | | | | | [0.115] | [0.092] | [0.102] | [0.100] | [0.099] | | | | | Third-tier FFL | -0.03 | -0.10 | -0.13 | -0.03 | -0.14 | | | | | | [0.111] | [0.093] | [0.104] | [0.101] | [0.100] | | | | | First-tier FBL (Backward linkages by count of suppliers) | 0.30** | 0.25** | 0.17 | 0.08 | 0.16 | | | | | | [0.143] | [0.114] | [0.136] | [0.124] | [0.123] | | | | | Second-tier FBL | 0.14 | 0.10 | 0.12 | 0.07 | 0.12 | | | | | | [0.128] | [0.104] | [0.116] | [0.111] | [0.112] | | | | | Third-tier FBL | -0.34*** | -0.27*** | -0.16 | -0.23** | -0.21** | | | | | | [0.113] | [0.097] | [0.108] | [0.104] | [0.104] | | | | | Within-industry agglomeration | | | | | | | | | | WI with NC (Count of Chinese plants) | -0.21 | 0.09 | -0.05 | 0.09 | -0.19 | | | | | | [0.387] | [0.344] | [0.334] | [0.335] | [0.334] | | | | | WI with NJ (Count of JMNE affiliates) | 0.10 | 0.29* | 0.25* | 0.04 | 0.32** | | | | | | [0.162] | [0.151] | [0.145] | [0.162] | [0.151] | | | | | Agglomeration by industry linkages | | | | | | | | | | WFL with NC (Forward linkages by Chinese plants) | -0.49 | -0.85 | -0.57 | 0.46 | -0.19 | | | | | | [0.719] | [0.640] | [0.626] | [0.702] | [0.616] | | | | | WBL with NC (Backward linkages by Chinese plants) | 1.00 | 0.77 | 0.75 | -0.29 | 0.62 | | | | | | [0.622] | [0.565] | [0.543] | [0.687] | [0.547] | | | | | WFL with NJ (Forward linkages by JMNE affiliates) | 1.02** | 1.22*** | 1.12*** | 0.84** | 1.11*** | | | | | | [0.400] | [0.346] | [0.324] | [0.385] | [0.329] | | | | | WBL with NJ (Backward linkages by JMNE affiliates) | 0.81** | 0.39 | 0.45 | 0.83** | 0.52 | | | | | | [0.403] | [0.330] | [0.320] | [0.343] | [0.322] | | | | | Province dummy | Yes | Yes | Yes | Yes | Yes | | | | | Observations | 10,526 | 14,269 | 12,957 | 15,092 | 14,168 | | | | | Log-likelihood | -967.7 | -1404 | -1197 | -1363 | -1307 | | | | | Note: | | | | | | | | | All variables are in log form. Standard errors appear in parentheses. Statistical significance (two-tailed test): ***, ***, and * imply statistical significance at the 1%, 5%, and 10% level, respectively. Table 5: Estimation of the location choices with the alternative measures of inter-firm agglomeration | | Variation across: | C | onditional log | it | |---|------------------------------|----------|------------------|----------| | Inter-firm agglomeration | Firm, province, and year | (1) | (2) | (3) | | First-tier <i>FFL</i> (Forward linkage) | | 0.40*** | 0.38*** | 0.34*** | | | | [0.090] | [0.089] | [0.091] | | Second-tier FFL | | 0.04 | 0.01 | -0.03 | | | | [0.088] | [0.087] | [0.090] | | Third-tier FFL | | -0.08 | -0.07 | -0.12 | | | | [0.089] | [0.087] | [0.091] | | First-tier FBL (Backward linkages) | | 0.25** | 0.24** | 0.19* | | | | [0.109] | [0.110] | [0.111] | | Second-tier FBL | | 0.12 | 0.13 | 0.09 | | Tital day EDI | | [0.099] | [0.098] | [0.100] | | Third-tier FBL | | -0.24*** | -0.25*** | -0.26*** | | Within-industry agglomeration | Industry marings and year | [0.092] | [0.090] | [0.094] | | within-industry agglomeration | Industry, province, and year | | | | | WI with NC (Count of Chinese plants) | | 0.11 | 0.19* | -0.08 | | | | [0.119] | [0.104] | [0.322] | | WI with NJ (Count of JMNE affiliates) | | 1.07*** | 1.13*** | 0.2 | | | | [0.106] | [0.076] | [0.144] | | Agglomeration by industry linkages | Industry, province, and year | | | | | WFL with NC (Forward linkages by Chinese plants) | | | | -0.43 | | | | | | [0.599] | | WBL with NC (Backward linkages by Chinese plants) | | | | 0.66 | | Chinese plants) | | | | [0.526] | | WFL with NJ (Forward linkages by JMNE | | | | 1.19*** | | affiliates) | | | | [0.325] | | WBL with NJ (Backward linkages by | | | | 0.55* | | JMNE affiliates) | | | | | | | | | | [0.318] | | Region-specific variables | Province and year | | | | | Market potential (MP) | | | 0.34** | | | M. C. | | | [0.171] | | | Manufacturing wages | | | 0.32* | | | Economic zones | | | [0.169]
-0.15 | | | Economic zones | | | [0.132] | | | Province dummy | | | -0.15 | | | 2.10 vines duming | | | [0.132] | | | Observations | | 17,688 | 17,688 | 17,688 | | Log-likelihood | | -1631 | -1643 | -1594 | | | | | | | Note: We take log values for all variables except Economic Zones. Standard errors appear in parentheses. Statistical significance (two-tailed test): ***, **, and * imply statistical significance at the 1%, 5%, and 10% level, respectively. The 22 Chinese provinces make up the choice sets. Standard errors of the random coefficients are not shown, since most of them are not statistically significant. All variables also vary according to year of investments. Industry-level variables are distance-weighted. See section 2 for variable construction. Appendix Table A1: Statistical summary of the key variables | Appendix Table A1. Statistical summary of the key vari | Obs | Mean | Std. Dev. | Min | Max | |--|-------|------|-----------|------|------| | Agglomeration by inter-firm forward or backward | | | | | | | linkages | | | | | | | First-tier FFL (Forward linkage by count of customers) | 17732 | 0.21 | 0.48 | 0.00 | 3.09 | | Second-tier FFL | 17732 | 0.35 | 0.63 | 0.00 | 3.71 | | Third-tier FFL | 17732 | 0.44 | 0.71 | 0.00 | 3.56 | | First-tier FBL (Backward linkages by count of suppliers) | 17732 | 0.10 | 0.31 | 0.00 | 2.77 | | Second-tier FBL | 17732 | 0.23 | 0.52 | 0.00 | 3.37 | | Third-tier FBL | 17732 | 0.34 | 0.67 | 0.00 | 3.76 | | Within-industry agglomeration | | | | | | | WI with NC (Count of Chinese plants) | 17728 | 6.23 | 1.27 | 0.69 | 8.99 | | WI with NJ (Count of JMNE affiliates) | 17732 | 1.21 | 1.27 | 0.00 | 5.18 | | Agglomeration by industry linkages | | | | | | | WFL with NC (Forward linkages by Chinese plants) | 17732 | 6.36 | 1.05 | 2.64 | 8.93 | | WBL with NC (Backward linkages by Chinese plants) | 17732 | 6.34 | 0.99 | 3.18 | 8.82 | | WFL with NJ (Forward linkages by JMNE affiliates) | 17732 | 1.58 | 1.21 | 0.04 | 4.85 | | WBL with NJ (Backward linkages by JMNE affiliates) | 17732 | 1.44 | 1.18 | 0.01 | 4.76 | | Province-specific variables | | | | | | | Market potential (MP) | 17732 | 3.57 | 0.89 | 0.63 | 5.71 | | Manufacturing wages | 17732 | 4.48 | 0.59 | 2.86 | 6.32 | | Economic zones | 17732 | 0.44 | 0.57 | 0.00 | 1.79 | **Table A2: Correlation Matrix of the Key Variables** | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |----|---|------|------|------|------|------|------|------|------|------|------|------|------| | 1 | First-tier <i>FFL</i> (Forward linkage by count of customers) | 1.00 | | | | | | | | | | | | | 2 | Second-tier FFL | 0.48 | 1.00 | | | | | | | | | | | | 3 | Third-tier FFL | 0.47 | 0.62 | 1.00 | | | | | | | | | | | 4 | First-tier <i>FBL</i> (Backward linkages by count of suppliers) | 0.33 | 0.23 | 0.23 | 1.00 | | | | | | | | | | 5 | Second-tier FBL | 0.29 | 0.28 | 0.28 | 0.45 | 1.00 | | | | | | | | | 6 | Third-tier FBL | 0.30 | 0.30 | 0.32 | 0.44 | 0.64 | 1.00 | | | | | | | | 7 | WI with NC (Count of Chinese plants) | 0.21 | 0.24 | 0.27 | 0.18 | 0.21 | 0.21 | 1.00 | | | | | | | 8 | WI with NJ (Count of JMNE affiliates) | 0.45 | 0.48 | 0.51 | 0.38 | 0.43 | 0.47 | 0.53 | 1.00 | | | | | | 9 | WFL with NC (Forward linkages by Chinese plants) | 0.24 | 0.27 | 0.30 | 0.19 | 0.22 | 0.23 | 0.94 | 0.55 | 1.00 | | | | | 10 | WBL with NC (Backward linkages by Chinese plants) | 0.24 | 0.26 | 0.29 | 0.20 | 0.23 | 0.25 | 0.93 | 0.55 | 0.99 | 1.00 | | | | 11 | WFL with NJ (Forward linkages by JMNE affiliates) | 0.48 | 0.53 | 0.57 | 0.39 | 0.45 | 0.49 | 0.53 | 0.92 | 0.57 | 0.57 | 1.00 | | | 12 | WBL with NJ (Backward linkages by JMNE affiliates) | 0.47 | 0.50 | 0.54 | 0.40 | 0.47 | 0.51 | 0.51 | 0.93 | 0.55 | 0.56 | 0.98 | 1.00 | Figure 1: Inter-firm forward linkages (FFL) from the viewpoint of Firm A Figure 2: An illustration of weighted inter-firm forward linkages ($Weighted\ FFL$) from the viewpoint of $Firm\ A$ in the case of two-tier ## Working Papers in Trade and Development List of Papers (as at 2014) - 11/01 BUDY P RESOSUDARMO and SATOSHI YAMAZAKI, 'Training and Visit (T&V) Extension vs. Farmer Field School: The
Indonesian' - 11/02 BUDY P RESOSUDARMO and DANIEL SURYADARMA, 'The Effect of Childhood Migration on Human Capital Accumulation: Evidence from Rural-Urban Migrants in Indonesia' - 11/03 PREMA-CHANDRA ATHUKORALA and EVELYN S DEVADASON, 'The Impact of Foreign Labour on Host Country Wages: The Experience of a Southern Host, Malaysia' - 11/04 PETER WARR, 'Food Security vs. Food Self-Sufficiency: The Indonesian Case' - 11/05 PREMA-CHANDRA ATHUKORALA, 'Asian Trade Flows: Trends, Patterns and Projections' - 11/06 PAUL J BURKE, 'Economic Growth and Political Survival' - 11/07 HAL HILL and JUTHATHIP JONGWANICH, 'Asia Rising: Emerging East Asian Economies as Foreign Investors' - 11/08 HAL HILL and JAYANT MENON, 'Reducing Vulnerability in Transition Economies: Crises and Adjustment in Cambodia' - 11/09 PREMA-CHANDRA ATHUKORALA, 'South-South Trade: An Asian Perspective' - 11/10 ARMAND A SIM, DANIEL SURYADARMA and ASEP SURYAHADI, 'The Consequences of Child Market Work on the Growth of Human Capital' - 11/11 HARYO ASWICAHYONO and CHRIS MANNING, 'Exports and Job Creation in Indonesia Before and After the Asian Financial Crisis' - 11/12 PREMA-CHANDRA ATHUKORALA and ARCHANUN KOHPAIBOON, 'Australia-Thailand Trade: Has the FTA Made a Difference? - 11/13 PREMA-CHANDRA ATHUKORALA, 'Growing with Global Production Sharing: The Tale of Penang Export Hub' - 11/14 W. MAX CORDEN, 'The Dutch Disease in Australia: Policy Options for a Three-Speed Economy' - 11/15 PAUL J BURKE and SHUHEI NISHITATENO, 'Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries' - 12/01 BUDY P RESOSUDARMO, ANI A NAWIR, IDA AJU P RESOSUDARMO and NINA L SUBIMAN, 'Forest Land use Dynamics in Indonesia' - 12/02 SHUHEI NISHITATENO, 'Global Production Sharing in the Japanese Automobile Industry: A Comparative Analysis' - 12/03 HAL HILL, 'The Best of Times and the Worst of Times: Indonesia and Economic Crises' - 12/04 PREMA-CHANDRA ATHUKORALA, 'Disaster, Generosity and Recovery: Indian Ocean Tsunami' - 12/05 KYM ANDERSON, 'Agricultural Trade Distortions During the Global Financial Crisis' - 12/06 KYM ANDERSON and MARKUS BRUCKNER, 'Distortions to Agriculture and Economic Growth in Sub-Saharan Africa' - 12/07 ROBERT SPARROW, ELLEN VAN DE POEL, GRACIA HANDIWIDJAJA, ATHIA YUMNA, NILA WARDA and ASEP SURYAHADI, 'Financial Consequences of Ill Health and Informal Coping Mechanisms in Indonesia' - 12/08 KYM ANDERSON, 'Costing Global Trade Barriers, 1900 to 2050' - 12/09 KYM ANDERSON, WILL MARTIN and DOMINIQUE VAN DER MENSBRUGGHE, 'Estimating Effects of Price-distorting Policies Using Alternative Distortions Databases' - 12/10 W. MAX CORDEN, 'The Dutch Disease in Australia: Policy Options for a Three-Speed Economy' (revised version of Trade & Development Working Paper 2011/14) - 12/11 KYM ANDERSON, 'Policy Responses to Changing Perceptions of the Role of Agriculture in Development' - 12/12 PREMA-CHANDRA ATHUKORALA and SHAHBAZ NASIR, 'Global Production Sharing and South-South Trade' - 12/13 SHUHEI NISHITATENO, 'Global Production Sharing and the FDI–Trade Nexus: New Evidence from the Japanese Automobile Industry' - 12/14 PREMA-CHANDRA ATHUKORALA, 'Sri Lanka's Trade Policy: Reverting to Dirigisme?' - 12/15 PREMA-CHANDRA ATHUKORALA and SISIRA JAYASURIYA, 'Economic Policy Shifts in Sri Lanka: The Post-conflict Development Challenge' - 12/16 PREMA-CHANDRA ATHUKORALA and JUTHATHIP JONGWANICH, 'How Effective are Capital Controls? Evidence from Malaysia' - 12/17 HAL HILL and JAYANT MENON, 'Financial Safety Nets in Asia: Genesis, Evolution, Adequacy, and Way Forward' - 12/18 KYM ANDERSON, GORDON RAUSSER and JOHAN SWINNEN, 'Political Economy of Public Policies: Insights from Distortions to Agricultural and Food Markets' - 13/01 KYM ANDERSON, 'Agricultural Price Distortions: Trends and Volatility, Past and Prospective' - 13/02 PREMA-CHANDRA ATHUKORALA and SWARNIM WAGLÉ, 'Export Performance in Transition: The Case of Georgia' - 13/03 JAYANT MENON and THIAM HEE NG, 'Are Government-Linked Corporations Crowding out Private Investment in Malaysia?' - 13/04 RAGHBENDRA JHA, HARI K. NAGARAJAN & KOLUMUM R. NAGARAJAN, 'Fiscal Federalism and Competitive Bidding for Foreign Investment as a Multistage Game' - 13/05 PREMA-CHANDRA ATHUKORALA, 'Intra-Regional FDI and Economic Integration in South Asia: Trends, Patterns and Prospects'. - 13/06 JAYANT MENON, 'Can FTAs Support the Growth or Spread of International Production Networks in Asia?' - 13/07 PETER WARR and ARIEF ANSHORY YUSUF, 'World Food Prices and Poverty in Indonesia'. - 13/08 PETER WARR & ARIEF ANSHORY YUSUF, 'Fertilizer Subsidies and Food Self-Sufficiency in Indonesia'. - 13/09 MIA AMALIA, BUDY P. RESOSUDARMO, & JEFF BENNETT, 'The Consequences of Urban Air Pollution for Child Health: What does self reporting data in the Jakarta metropolitan area reveal?' - 13/10 PREMA-CHANDRA ATHUKORALA, 'Global Production Sharing and Trade Patterns in East Asia'. - 13/11 KYM ANDERSON, MAROS IVANIC & WILL MARTIN, 'Food Price Spikes, Price Insulation, and Poverty'. - 13/12 MARCEL SCHRÖDER, 'Should Developing Countries Undervalue Their Currencies?'. - 13/13 PREMA-CHANDRA ATHUKORALA, 'How India Fits into Global Production Sharing: Experience, Prospects and Policy Options'. - 13/14 PETER WARR, JAYANT MENON and SITTHIROTH RASPHONE, 'Public Services and the poor in Laos'. - 13/15 SAMBIT BHATTACHARYYA and BUDY R. RESOSUDARMO, 'Growth, Growth Accelerations and the Poor: Lessons from Indonesia' - 13/16 PREMA-CHANDRA ATHUKORALA and ARCHANUN KOPHAIBOON, 'Trade and Investment Patterns in Asia: Implications for Multilateralizing Regionalism' - 13/17 KYM ANDERSON and ANNA STRUTT, 'Emerging Economies, Productivity Growth, and Trade with Resource-Rich Economies by 2030' - 13/18 PREMA-CHANDRA ATHUKORALA and ARCHANUN KOHPAIBOON, 'Global Production Sharing, Trade Patterns and Industrialization in Southeast Asia' - 13/19 HAL HILL, 'Is There a Southeast Asian Development Model?' - 14/01 RAMESH CHANDRA PAUDEL, 'Economic Growth in Developing Countries: Is Landlockedness Destiny? - 14/02 ROSS McLEOD, 'The ill-fated currency board proposal for Indonesia' - 14/03 ALIN HALIMATUSSADIAH, BUDY P. RESOSUDARMO AND DIAH WIDYAWATI, 'Social Capital to Induce a Contribution to Environmental Collective Action in Indonesia: An Experimental Method' - 14/04 SHUHEI NISHITATENO and PAUL J. BURKE, 'The motorcycle Kuznets curve' - 14/05 PREMA-CHANDRA ATHUKORALA, 'Sri Lanka's Post-conflict Development Challenge: Learning from the Past' - 14/06 PREMA-CHANDRA ATHUKORALA, 'Industrialisation through State-MNC Partnership: Lessons from the Malaysia's National Car Project' - 14/07 DELWAR HOSSAIN, 'Differential Impacts of Foreign Capital and Remittance Inflows on Domestic Savings in the Developing Countries: A Dynamic Heterogeneous Panel Analysis' - 14/08 NOBUAKI YAMASHITA, TOSHIYUKI MATSUURA *and* KENTARO NAKAJIMA, 'Agglomeration effects of inter-firm backward and forward linkages: evidence from Japanese manufacturing investment in China'