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Abstract 

 

A true income tax would not affect asset values or investment decisions for given values 

of cash flows and pre-tax interest rates (Samuelson, 1964). However, most so-called 

income taxes do not fully tax capital gains on accrual. This note shows that in the absence 

of adjustment costs, investment decisions are not distorted by the lack of a 

comprehensive tax on the capital gains on unimproved land, provided that the 

depreciation of improvements is allowed as a tax deduction. It also provides the intuition 

underlying the closely related results of Hartman (1978) and Abel (1983). 
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1. Introduction 

Samuelson (1964) showed that a tax on true income, defined as net cash flow plus 

appreciation of asset values, has no effect on the value of an asset or a firm, holding 

constant the cash flows in all periods and the pre-tax interest rate. In this sense, a tax on 

true income is ‘investment neutral’. Of course, it does not follow from Samuelson’s 

theorem that optimal investment decisions are independent of the rate of a tax on true 

income. To the contrary, under fairly general assumptions, an income tax reduces savings 

and therefore, at least in a closed economy, it must also reduce investment. However, to 

the extent that aggregate savings and investment are both reduced by the imposition of an 

income tax, this happens because the imposition of an income tax increases the pre-tax 

interest rate, thereby reducing investment, but lowers the after-tax interest rate, thereby 

reducing savings.  

The present paper deals with income taxes, in which by definition interest receipts 

are taxed and interest payments are tax deductible.1 Hartman (1978: 254) appeared to 

contradict Samuelson’s theorem by claiming that ‘a tax system involving the tax 

deductibility of both interest payments and of true economic depreciation is neutral if 

there are no adjustment costs but is not neutral if adjustment costs are present (emphasis 

added)’. We refer to these two findings as Hartman’s ‘positive result’ (that is, neutrality 

in the absence of adjustment costs) and his ‘negative result’ (that is, the alleged non-

neutrality in the presence of adjustment costs). 

Abel (1983: 705) claimed that ‘In the presence of costs of adjustment, true economic 

depreciation is calculated using the shadow price of installed capital …’, where the 

shadow value of installed capital is the marginal value to the firm of a unit of installed 

                                                 
1 Hartman (1978) and Abel (1983) also discuss tax bases that exclude interest payments 

and receipts. The basic neutrality result for such ‘cash flow’ taxes is due to Brown 

(1948). If the tax authorities take a fixed share of all revenues and bear the same fixed 

share of all costs, they effectively appropriate a corresponding share of the equity in the 

taxed project or asset. This correspondingly reduces the value of the asset, but does not 

change the investment decisions that maximize its value. 
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capital. He showed that in the presence of adjustment costs, investment neutrality can be 

preserved if the tax authorities allow firms to deduct depreciation defined in this way.  

We confirm that Samuelson’s theorem does in fact hold quite generally, both in the 

presence and absence of adjustment costs. This is not an extension of Samuelson’s 

theorem, since his proof used a framework that does not exclude adjustment costs.2 

Rather, by using a framework that explicitly includes adjustment costs of the type 

modeled by Hartman and Abel we merely clarify the generality of Samuelson’s theorem. 

We then show that it provides the intuition that underlies the results of both Hartman and 

Abel.  

The difference between Samuelson’s result, on the one hand, and Hartman’s and 

Abel’s, on the other, is due to different assumptions about how the tax authorities 

measure allowable depreciation—that is, what can be subtracted from cash flow in 

calculating taxable income. Samuelson’s tax base is true economic income, defined as the 

cash flow minus the fall in the total value of the firm, or asset. Hartman and Abel assume 

that taxable income is the cash flow minus the fall in the value at market prices 

(Hartman) or shadow prices (Abel) of the firm’s capital.  

The value of any firm or project can be thought of as the value of its fixed factors 

and its variable factors. In the terminology of real estate investment, the former can be 

labeled ‘unimproved land’ and the latter ‘improvements’. Samuelson effectively defines 

depreciation as the change in the total value of the unimproved land and the associated 

improvements, whereas Hartman and Abel effectively assume that depreciation is 

measured as the change in the value of improvements alone. Samuelson’s income tax 

therefore includes a comprehensive accruals tax on capital gains, or losses, whereas the 

income tax analyzed by Hartman and Abel could be described as a tax on the income 

from capital alone.  

                                                 
2 Abel (1983: 705) incorrectly asserts that the neutrality results of both Brown (1948) and 

Samuelson (1964) were derived in models without costs of adjustment. While neither 

paper explicitly mentions adjustment costs, both are sufficiently general to incorporate 

them and both neutrality results apply to models with adjustment costs. 
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In this note we survey and unify the contributions of the three authors and make the 

following contributions: 

1. We clarify the fact that Samuelson’s neutrality theorem applies in the presence of 

adjustment costs, despite the claim to the contrary by Hartman and without the 

need to use shadow prices rather than market prices, as claimed by Abel. 

2. We provide the underlying rationale for Hartman’s results. In the presence of 

adjustment costs, the value of a package of land and improvements cannot be 

unambiguously separated into the value of the land and the value of the 

improvements. This is because the value of the land depends on whether 

improvements have been installed, and the value of what has been installed is 

generally different from its value before installation. In contrast, in the absence of 

adjustment costs, the value of the land is independent of the improvements and 

the value of the improvements is independent of whether or not they have been 

installed. Since unimproved land is in perfectly inelastic supply, it is always 

efficiently utilized regardless of how it is taxed, and Samuelson’s theorem implies 

that investment in improvements will be independent of the tax rate provided that 

the true depreciation of improvements is allowed as a tax deduction.  

Hartman’s positive result has an important policy implication: if 

adjustment costs are relatively small, then the lack of a comprehensive tax on the 

capital gains on appreciating but inelastically supplied factors, such as 

unimproved inner city land, does not lead to overinvestment in associated assets, 

such as inner city housing, provided that the depreciation of improvements is 

allowed as a deduction against tax—and the tax systems of the United States, 

United Kingdom, Australia, New Zealand and doubtless many other countries 

make a rough attempt to do this. 

3. We provide the underlying rationale for Abel’s finding: his rule for measuring 

allowable depreciation for tax purposes is a linear approximation to Samuelson’s 

true economic depreciation. By valuing capital for depreciation purposes at its 

marginal value to the firm, Abel’s rule ensures that the marginal change in his 

proposed measure of allowable depreciation due to any given change in the 

investment plans of the firm is equal to the marginal change in Samuelson’s 
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measure of allowable depreciation due to the same change in the investment plans 

of the firm. Given the same marginal after-tax costs and benefits of investment 

under the two rules, it follows that the optimal investment decisions of the firm 

must be the same under the two rules. Since Samuelson’s rule is investment 

neutral (point 1 above) it follows that Abel’s must also be investment neutral.  

 

2. The basic model 

In this section we set out a model of the investment choices facing a firm, which we use 

in the remainder of the note to substantiate the claims made in the introduction.  

We use a discrete time model with the following timing conventions: all cash 

flows—that is, tax payments, interest payments, and all sales and purchases, including 

new investment—occur at the end of the period indicated by their subscript; stocks are 

also measured at the end of the period indicated by their subscript, but immediately after 

the flows have occurred. It may help to think of period t as a year in which flows occur 

during the day of December 31st and stocks are measured at 24:00 on December 31st. 

Discounting is important over a full year, but not over the course of one day. Interest 

receipts are taxable and interest payments tax-deductible. The cash flow at the end of 

period t, net of ‘allowable depreciation’, is taxed at rate mt. The way in which the tax 

authorities measure allowable depreciation is initially left unspecified and so is the 

physical process by which the capital stock in one period depends on its level in the 

preceding period and on new gross investment. The value at the end of period t of a 

representative firm is given by Fisher’s formula:3

,
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where: 

Vt is the value of the firm at the end of period t, but immediately after the 

occurrence of period t cash flows. It can be thought of as the value of the shares, 

ex dividend and after retained earnings have been reinvested; 

                                                 
3 Round parentheses ( ) are used to indicate functional forms and square [  ], or curly {  } 

parentheses are used to group terms for multiplication, addition, etc.  
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rt+s is the interest rate during period t+s; that is, between the end of t+s–1 and the 

end of period t+s; the discount factor between the end of period t+s and the end of 

period t+s+1 is therefore 1/(1+rt+s).4

pt+s is the price of output at the end of period t+s; 

vt+s is the price of new capital goods at the end of period t+s; 

wt+s is the wage rate at the end of period t+s; 

Kt+s is the capital stock at the end of period t+s, immediately after the occurrence 

of gross investment in year t+s; 

It+s is gross investment at the end of period t+s, defined as the number of units of 

capital purchased and installed;  

F(Kt+s–1, It+s, pt+s, wt+s) is the maximum cash flow at the end of period t+s, net of 

wages, but before subtracting tax and investment spending. The wage rate, wt+s, is 

included in the net cash flow function because the firm is assumed to choose 

employment to maximize the net cash flow, given the capital stock, the rate of 

investment, the wage rate and the price of output. Gross investment, It+s, is 

included as an argument of the cash flow function to allow for the possibility that, 

in the presence of adjustment costs, some factors that could otherwise have been 

used to produce saleable output are instead needed to install new capital 

equipment; 

mt is the marginal rate of income tax. Tax payments are made at the end of each 

period; 

Dt+s is the amount of depreciation allowed by the tax authorities at the end of 

period t+s. 

                                                 
4 The interest rate and all prices are measured relative to a numeraire that might be 

money, or some specified good, or bundle of goods. If the nominal interest rate is r and if 

the rate of inflation in terms of some specified bundle of goods is π, then a tax on 

nominal interest at rate m is equivalent to a tax on real income, in terms of the specified 

bundle of goods, at rate τ, where τ = rm/[r–π]. Therefore, with interest rates and inflation 

given and exogenous, the difference between taxing real and nominal income is just a 

difference in the numerical value of the tax rate. 
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Since tax in equation 1 is levied on the cash flow net of current investment expenditure it 

might appear that the tax rules are always assumed to allow the immediate expensing of 

investment. In fact, however, the formulation is quite general because equation 1 does not 

specify how investment spending is treated in the definition of Dt. 

Equation 1 can be updated by one period to give an expression for Vt+1. Substitution 

of this expression back into equation 1, gives: 
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Multiplying both sides of equation 2 by 1+rt+1[1–mt+1] and then subtracting Vt from both 

sides gives the equation of yield, according to which the value of the enterprise, or asset, 

multiplied by the after-tax interest rate must equal the after-tax income, defined as the 

cash flow, plus the capital gain, minus all tax payments: 

.]),,,(][1[]1[ 11111111111 tttttttttttttt VVDmIvwpIKFmVmr −++−−=− +++++++++++       (3) 

 

3. Samuelson’s income tax neutrality theorem 

In this section we derive the tax neutrality theorem of Samuelson (1964), according to 

which a tax on true income leaves the value of every asset unchanged, for given values of 

its cash flow in all periods and for a given pre-tax interest rate. As claimed in the 

introduction, this theorem underlies all the other results referred to in this note.  

It is clear from equation 3 that in the absence of tax, the interest rate multiplied by 

the value of the firm would equal the cash flow plus the increase in the value of the firm. 

It is also clear from equation 3 that in the presence of a tax that reduces the after-tax 

interest rate from rt+1 to [1–mt+1]rt+1 and that reduces the cash flow by the same factor, 

[1–mt+1], the allowable depreciation that make the value of the firm independent must be 

minus the capital gain: 

].[ 1−+++ −−= ststst VVD                                                       (4) 

Substituting the implied value of Dt+1 into equation 3 gives an equation in which every 

term is multiplied by [1–mt+1]. Dividing through by this factor, subtracting Vt from both 

sides of the resulting equation and then dividing both sides by [1+rt+1] gives: 
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Equation 5, updated by one period, can be used to replace Vt+1 by the present value in 

period t+1 of the net cash flow in period t+2 and the value of the firm in period t+2. 

Successive substitutions of this type imply that: 
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Equation 6 has been derived while allowing for the possibility that the rates of income tax 

in each period may vary and may all be non-zero. It is identical to equation 1 in the case 

when the tax rate is zero in every period. It therefore shows that, for given values of the 

pre-tax cash flow and pre-tax interest rate, the value of the firm is independent of the 

income tax rate, or rates. This is, of course, what is predicted by Samuelson’s income tax 

neutrality theorem and it has been derived here in a model that explicitly includes 

adjustment costs of the type modeled by Hartman and Abel.  

Our finding shows that Hartman’s negative result—that a tax on true income is not 

neutral when adjustment costs are present—is at best misleading because the tax that he 

analyzes is not a tax on the full income of the firm, but only on part of its income: he 

assumed that allowable depreciation for tax purposes is defined by an equation, like 

equation 4′ below, that involves only the change in the value of the capital stock and not 

the change in the total value of the firm.  

 

4. Abel’s income tax neutrality theorem 

So far, no assumption has been made about how the firm chooses the path of investment 

and the capital stock. Samuelson’s neutrality result holds for any arbitrarily chosen path 

of these variables. In the remainder of this note, we assume that the firm acts to maximize 

its value. For simplicity, we assume that capital decays exponentially:  

.]1[ 1 ststst IKK +−++ +−= δ                                                  (7) 

With the level of the capital stock in the previous period pre-determined, we shall treat 

the firm’s investment decision problem in any period t as the choice of the level of the 

capital stock at the end of that period, Kt, and in all future periods, and regard It+s not as a 
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separate variable, but merely as a compact way of writing Kt+s – [1–δ]Kt+s–1. Using to 

denote the optimal value of K

tK~

t, true economic depreciation on the optimum path is: 

)].~()~([ 11 −+−++++ −−= ststststst KVKVD                                        )4~(  

Let  be the ‘shadow value’ of installed capital at the end of period t+s, defined as 

the marginal value to the firm of an extra unit of installed capital when the actual level of 

the capital stock at the end of period t+s is the level that would maximize the value of the 

firm in the absence of any income tax or, equivalently, in the presence of a tax on true 

economic income: 
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We now drop our assumption that there is a comprehensive tax on the capital gains of the 

firm and assume instead, following Hartman and Abel, that allowable depreciation for tax 

purposes in any period depends only on the initial and final levels of the capital stock: 

],[ 11 −+−++++ −−= ststststst KzKzD                                          (4′) 

where zt+s and zt+s–1 are parameters set by the tax authorities that are exogenous to the 

firm.  

Now consider the first order conditions for the levels of the capital stock in all future 

periods that maximize the value of the firm in period t when allowable depreciation is 

given by equation 4΄, rather than by equation 4 or . The tax authorities’ rule for 

allowable depreciation affects these first order conditions only through its effect on the 

partial derivatives of allowable depreciation with respect to the capital stock. Since 

equation 4′ implies that K

4~

t+s affects allowable depreciation in periods t+s and t+s+1, it 

follows that the same first order conditions for the capital stock will be obtained when 

allowable depreciation is given by equation 4′, rather than equation , if the partial 

derivatives of D

4~

t+s and Dt+s+1 in equation 4′ with respect to Kt+s are identical to the partial 

derivatives of Dt+s and Dt+s+1 in equation  with respect to K4~ t+s. That is, investment 

neutrality will be obtained if the parameters used in the tax authorities’ formula for 

allowable depreciation are equal to the shadow prices defined by equation 8:  
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Equation 4′′ is the discrete time version of Abel’s answer to the question of how Dt must 

be set in order to achieve tax neutrality. Abel derived this condition by explicitly 

analyzing the investment decisions that maximize the value of the firm. Our derivation of 

it from Samuelson’s theorem, and without the need to derive the firm’s first conditions 

provides the intuition that underlies Abel’s theorem—namely, his tax rule is a linear 

approximation to Samuelson’s rule and a linear approximation is all that is needed to 

yield the same first order conditions under the two rules for measuring allowable 

depreciation—Samuelson’s and Abel’s.  

The present derivation of Abel’s’ rule also demonstrates the need for a caveat that 

Abel does not explicitly mention: the shadow value of capital used by the tax authorities 

in each period in equation 4′′ must be set so that it is exogenous to the firm and must be 

evaluated at the level of the capital stock that would be chosen in absence of taxation. If 

equation 4′′ were replaced by: 

],)()([ 11 −+−++++ −−= ststststst KKqKKqD                                   (4′′′) 

the firm would generally be able to manipulate the shadow price of capital in each period 

and the partial derivatives of Dt+s and Dt+s+1 with respect to Kt would no longer be minus 

q(Kt+s) and q(Kt+s), respectively, but would also contain terms in the partial derivative, 

q′(Kt+s). 

Setting allowable depreciation according to equation 4′′ is much easier said than 

done. Abel (1983: 710–711) shows that if the firm’s production function is linearly 

homogenous in capital, labor and investment—thus ruling out the case where unimproved 

land is important—and if the firm is a price taker, then the shadow value of capital can be 

estimated as the ratio of the value of the firm to the level of the capital stock. However, 

this result is of little interest in designing policy since if the value of the firm is 

observable, there is no need to estimate the shadow value of capital, nor to worry about 

whether the production function is linearly homogenous or not. Neutrality can be 

achieved simply by implementing Samuelson’s tax on true economic income. Abel 

concludes his discussion of the case in which the production function is linearly 

homogenous as follows: ‘In this case, the neutral tax system can be stated as follows: 

expense all capital expenditures and treat any change in the value of the firm as taxable 
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income (p.711).’ The irony of this is that Abel’s proposal to ‘expense all capital 

expenditures and treat any change in the value of the firm as taxable income’ is 

Samuelson’s proposal and, as confirmed in section 3, it works in every case, regardless of 

whether the production function is linearly homogenous or not. 

Hartman’s positive result is useful in designing efficient income tax treatment of 

assets and firms whose value cannot be readily observed by the tax authorities, provided 

that adjustment costs are small. If adjustment costs are substantial and if asset values can 

only be readily observed when assets are traded, the best feasible approximation to a true 

income tax is probably the proposal of Green and Sheshinski (1978) and Meade et al. 

(1978) that the authorities should levy tax on capital gains only at realization, but should 

then charge the tax-payer for the estimated cumulated interest cost to the authorities of 

the delay in payment from accrual to realization. This interest cost would be estimated by 

using the observed interest rates over the period for which the asset was held and 

assuming that the appreciation, or depreciation, in its value occurred at a constant 

exponential rate between its observed purchase and sale dates. 

This proposal would approximate Samuelson’s comprehensive income tax, but the 

approximation would involve errors in the case of an asset whose value did not change at 

a constant exponential rate between its purchase and sale.  

 

5. The investment decision in the general case 

In the previous section we did not derive the first order conditions for the optimal choice 

of the capital stock in each period, but merely noted that the same first order conditions 

will be obtained regardless of whether allowable depreciation is set by equation 4 or by 

equation 4′′. In this section we explicitly derive the first order conditions in the general 

case in which the value of the firm is given by equation 1 and allowable depreciation is 

given by equation 4′.   
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It can be seen by inspection of equation 1 that the value of the firm at the end of 

period t, when Kt is given, is independent of the capital stock at the end of the previous 

period.5 Since this holds for any period, we have: 
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Next, note that if Kt+1 is chosen to maximize Vt, then: 
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This merely means that the present value of the benefits of an amendment to the firm’s 

investment plans that raises gross investment in period t+1 by one unit and reduces gross 

investment in period t+2 by [1–δ] units, so as to raise Kt+1 by one unit and keep Kt+2 

unchanged, must equal the present value of the costs of this amendment. Equation 11 

implies that the partial derivative of the numerator on the right side of equation 2 with 

respect to Kt+1 must be zero. But Kt+1 only enters this numerator through Vt+1, Dt+1 and 

It+1, which is an abbreviation for Kt+1 – [1–δ]Kt. Therefore: 
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where FI(t+1) denotes the partial derivative of the cash flow in period t+1 with respect to 

It+1. Next, partially differentiate equation 2 with respect to Kt, recalling that ∂Vt+1/∂Kt is 

zero and that Dt+1 is here assumed to be given by equation 4′: 
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where FK(t+1) denotes the partial derivative of the cash flow in period t+1 with respect to 

Kt+1.  

In the next two sections we consider the special cases of equations 12 and 13 that 

correspond to the assumptions of Hartman and Abel. 

 

                                                 
5 Equation 1 shows that Vt does depend on both Dt+1 and It+1. However, we have assumed 

that allowable depreciation is given by equation 4′. This makes Dt+1 independent of Kt–1. 

Similarly, equation 7 makes It+1 independent of Kt–1 for given values of Kt and Kt+1. 
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6. Hartman’s income tax neutrality theorem  

In the absence of adjustment costs, FI(t) is zero for all t. Hartman showed that investment 

neutrality can be preserved in this special case by setting zt+s = vt+s, for all s. This result 

can be readily derived from equations 12 and 13. In the absence of adjustment costs, FI(t) 

= FI(t+1) = 0. With zt+1 = vt+1 equation 12 therefore becomes: 

11)( ++ = tt vKq                                                       (12′) 

and with zt = vt equation 13 becomes: 
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Using equation 12′ lagged one period to replace the left side of equation 13′ by vt, gives: 

 .
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Multiply both sides of equation 14 by 1+rt+1[1–mt+1], subtract mt+1vt from both sides, 

divide all through by [1–mt+1] and rearrange terms to show that the first order condition 

relating the marginal product of capital to the cost of capital is independent of the rate of 

income tax: 

].[)1( 111 tttttK vvvvrtF −−+=+ +++ δ                                      (15) 

The three terms on the right side of equation 15 correspond to the interest cost of capital, 

physical depreciation and capital losses, before allowing for physical depreciation. The 

sum of these three terms is the cost of capital as derived by Jorgensen (1965) and others.  

The intuition behind Hartman’s theorem—that in the absence of adjustment costs a 

tax on capital income alone that does not include a comprehensive tax on capital gains is 

investment neutral—can be seen by noting that in the absence of adjustment costs, it 

makes no difference to the firm whether it rents its capital each period, or buys it and 

installs it. Suppose that it rents it from a firm that owns capital, but does not own any 

land. First, note that if the capital-owning firm is allowed to deduct true economic 

depreciation, it will make a normal rate of return on its capital if it charges the same 

rental rate as it would have charged in the absence of taxation. Next, note that the value 

of the land-owning firm, with all capital rented, is simply the value of the land that it 

owns. This will depend on the stream of future revenues—net of the cost of renting 

capital and other factors—that could be obtained if the optimal amounts of capital and 
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other factors were employed in each future period. This value is independent of the 

amount of capital currently employed. In this situation, there is therefore no scope for 

altering the amount of capital gains on some particular parcel of land by over-investing in 

the capital employed with it. The land-owning firm’s decision on how much capital to 

hire each period is exactly analogous to its decision on how much labor to hire. Provided 

that expenditure on renting capital is allowed as a deduction against tax, the land-owning 

firm will maximize profits in each period by equating the marginal product of capital to 

its per period rental price, just as it equates the marginal product of labor to the pre-tax 

wage rate per period. Since the income tax does not alter the per period rental price of 

capital corresponding to any particular value of the interest rate, it has no effect on the 

level of investment that equates the marginal product of capital to the per period rental 

price of capital.  

The above logic generally breaks down if adjustment costs are important, since the 

value of the land owned by the firm is then not independent of the amount of capital that 

has been installed on it.  

 

7. Investment neutrality in the presence of adjustment costs 

Abel’s theorem that investment neutrality can be preserved, even when FI(t+s) is not 

zero, by setting zt+s =  for all s, was derived in section 4 without explicitly 

deriving the first order conditions by noting that Samuelson’s tax ensures investment 

neutrality by making the firm’s value independent of the tax rate and Abel’s proposal 

yields the same first order conditions as Samuelson’s by making allowable depreciation a 

linear approximation to allowable depreciation under Samuelson’s tax. Abel’s result can 

now be confirmed by noting that when allowable depreciation is given by equation 4′, 

equation 12 becomes: 
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and equation 13 becomes: 
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By definition, when mt = 0 for all t, Kt = and K*
tK t+1 =  for all t. Equations 12′′ and 

13′′ can now be solved for and respectively: 

*
1+tK

)( *
1+tKq ),( *

tKq

)],1([)( *
1

*
1 +−= ++ tFvKq Itt                                         (12′′′) 

and: 

.
1

])1(][1[)1()(
1

1
**

*

+

+

+
−+−−+

=
t

tIK
t r

vtFtFKq δ                        (13′′′)            

By replacing  in equation 12′′ and  in equation 13′′ by the expressions on 

the right sides of equations 12′′′ and 13′′′ and rearranging terms it is possible to obtain: 

)( *
1+tKq )( *

t
Kq

)],1()1(][1[)()( *
1

*
11 +−+−=− +++ tFtFmKqKq IIttt                              (12′′′′) 

and:  

=− )()( *
tt KqKq   

[ ].)]1()1(][1[)1()1(
]1[1

1 **

11

1 +−+−−+−+
−+

−

++

+ tFtFtFtF
mr

m
IIKK

tt

t δ          (13′′′′)  

It is clear that these two equations can be satisfied by setting Kt = and K*
tK t+1 = , so 

that each of the terms q(K

*
1+tK

t), q(Kt+1), FK(t+1) and FI(t+1) is equal to the corresponding 

asterisked term. This makes both sides of both of the above equations zero. 

The above demonstration confirms that investment neutrality can be obtained, even 

in the presence of adjustment costs, by setting allowable depreciation according to 

equation 4′. Abel’s derivation is less cumbersome than the one just given because he 

ignores the difference between asterisked and unasterisked values and cancels out the 

terms in 1–mt+1 in equations 12′′ and 13′′. This gives the right answer, provided one 

remembers that the values of qt and qt+1 that are used by the tax authorities in setting zt 

and zt+1 must be set independently of Kt and Kt+1 and must somehow be evaluated at the 

levels that would be optimal in the absence of taxation. 

Combining equations 12′′′ and 13′′′ gives the following first order condition for the 

optimal choice of capital in period t in the absence of taxation, or when depreciation is 

arranged so that taxation is investment neutral: 

).(]1[)1(]1[][)1( *
1

*
111

* tFrtFvvvvrtF ItItttttK ++++ +−+−+−−+=+ δδ                (15′) 
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Both equation 15 and equation 15′ are first order conditions for the optimal level of the 

capital stock when the tax system is investment neutral. The difference between them is 

that equation 15′ allows for costs of adjustment whereas equation 15 assumes that costs 

of adjustment are negligible. Both equations compare the costs and benefits in period t+1 

of an amendment to firm’s investment plans that raise the capital stock in period t by unit, 

leaving it unchanged in other periods; this is done by increasing gross investment by one 

unit in period t and reducing it by [1–δ] units in period t+1. When adjustment costs are 

not negligible, this results in the inclusion of two terms on the right side of equation 15′ 

that are absent from equation 15: adjustment costs are raised by in period 

t+1 and reduced by units in period t; to obtain the present value of this latter cost 

saving in period t+1, it is necessary to multiply it by [1+r

)1(]1[ * +− tFIδ

)(* tFI

t+1]. 
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