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Abstract

This article applies an analytical bias correction technique for inequality
measures to income data from China and Kenya. We use the coefficient of
variation squared and illustrate how the bias is downward for positively skewed
distributions. The analytical bias correction technique is then compared to a
jackknife estimator in a simulation exercise. The bias will be important, even
for moderately large sample sizes.
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1 INTRODUCTION

Most commonly used inequality measures such as Theil’s Entropy indexes, Atkinson’s
measure, and the coefficient of variation are ratios of random variables and are thus
biased in small samples. The expected value of such inequality measures will take
the form
El=1,+0 <1>
n
where Iy is the true population value of the inequality measure and the bias term of

order n~!

will become very small in large samples. See Kakwani (1980) or Ravallion
(1994) for a review of income inequality estimation. Breunig (2001) discusses the
bias problem and demonstrates how the large-n expansion may be used to derive a
bias-corrected estimator.

The purpose of this paper is to apply the bias correction technique developed in
that paper for the Coefficient of Variation squared (CV?) to income data from China
and Kenya. In this paper, we demonstrate that the bias may be important, even in
samples that would normally be considered to be quite large. This question is then
explored further in a simple simulation exercise. Furthermore, we illustrate how the
degree of bias in the estimated inequality measure is related to the skewness in the
distribution of the sample data.

CV? has been used as an inequality measure, as has the coefficient of variation
(CV) itself. CV? gives identical rankings to CV and therefore embodies the same
underlying notion of social welfare (See Blackorby and Donaldson (1978) for mapping
of inequality measures to implied social welfare functions.) Lehrer and Nerlove
(1981), Blackburn and Bloom (1990), and Cancian, Danziger, and Gottschalk (1992)
have all used CV? as an inequality measure. Formby, Smith, and Zheng (1999)
have shown the usefulness of CV? for second-order stochastic dominance rankings of

normalized distributions.



2 BIAS REDUCTION: APPLICATION

Given a sample of size n: 1, ..., y,; the square of the sample coefficient of variation

is expressed as

82

0=— (1)
72
where 7 and s? are the sample mean and variance. The bias correction technique

proposed by Breunig (2001) is to instead estimate

0 = 6 — Bias(d) (2)
where
— A 53/2 ~1/2
Bias() = “— {39 - 2@1} 3)

and the sample skewness coefficient is calculated as

>y —9)* /s (4)

"=
n

The estimator 6 is unbiased upto O(n ). (See Breunig (2001) for details.)

From (3) it is clear that § = § when 30"° = 29,.  When v, > 3CV in the
population, the bias will be negative. Income distributions tend to have large posi-
tive skewness, thus inequality estimation using CV? will be biased downward under
most circumstances. The greater the inequality the greater the degree to which the
measure will understate inequality.

We estimate the bias corrected CV? for two data sets on income: one from Kenya
(1986, Central Bureau of Statistics and the Ministry of National Planning and Devel-
opment of Kenya) on 2,424 urban households and 1988 Chinese data on 9,009 urban
households gathered by a group of six University of California Riverside faculty mem-
bers along with the Chinese Academy of Social Sciences. For additional information
on these data sets see Mwangi wa Githinji (2000) and Khan, et. al. (1991).

Table 1 gives summary statistics for household and per-capita income as well as the
estimates of 6 and . The Gini coefficient is also calculated for reference. Per-capita
income is computed by equally dividing household income among all members of the

household and thus almost certainly adds a downward bias to inequality. Household



income uses the household as the main unit of analysis, weighting total household

income by household size.
[Table 1 here]

It is clear from this table that urban inequality is much larger in Kenya than
in China. Comparing the almost-unbiased coefficient of variation squared 6 with
the sample CV? as it is usually calculated, 9, the two data sets give quite different
results. For the China data, the bias correction gives almost no change in the squared
coefficient of variation. In the Kenya data, however, the usual estimator of CV?, @,
gives an underestimate of inequality. The bias correction give a change of 4.3%, quite
substantial for a sample of this size. This is because for the Kenya data the condition
> %5‘7 is satisfied. An examination of the nonparametric density functions of the
two distributions! shows that the Kenya data has a long right-hand tail, signalling
both large skewness and greater inequality. The lack of difference between 0 the 0
for China is driven by two factors: the China data set is almost four times larger
than the Kenyan one so that the Bias (6) in (3) is almost zero— that is 6 and hence
6 are both asymptotically unbiased. The second reason is that the China data has
a less—skewed distribution— that is the value of 4, is small and close to %CV making

the bias of # in (3) near zero.

3 SIMULATION

Now we turn to the question of how important the bias in the coefficient of variation is
for small samples. We attempt to address this question through two simple simulation
exercises. First, using the unweighted Kenya data as the “population”, we drew
simple random samples (with replacement) of size n = 50 to n = 500, calculated
both the sample coefficient of variation squared and the “almost unbiased” estimator
of CV? for this new sample. In addition, we calculated an alternative bias-corrected
estimator, gﬂm, using the leave-one out jackknife estimator calculated in the usual

way (see Efron (1982, p. 6)). The jackknife will give similar results to a simple

!The graphs of the nonparametric densities as well as the data intself are available from the
author.



bootstrap bias correction, however, the jackknife may be more suitable for inequality
measures when the sampling is not simple random sampling (See Breunig and Stern
(2001).) This exercise was repeated 50000 times. The results are summarized in
Figure 1 and Table 2. The first part Figure 1 graphs the bias as a percentage of
the true value of the parameter for the three estimators. The second part of Figure
1 graphs the mean squared error (MSE) of the two bias-corrected measures, 6 and
gj,.m, relative to the mean squared error of 0.

As can be seen from the figures, the jackknife estimator has the lowest average
bias and the highest mean squared error throughout. The high variability of the
estimator is a well-known problem of the jackknife (see Hinkley (1978), for example).
Considering the bias, the proposed bias corrected estimator 0 dominates 6 as it is
usually calculated for all sample sizes which were considered. However, unlike the
jackknife, the improvement in the bias comes at only a small loss of mean squared
error. In cases where bias is the main concern of the practitioner, the bias-corrected
estimator is thus preferable. Although the jackknife gives lower bias, the extremely
high mean squared error would indicate that one should be suspicious of the results
for any given case. 0 appears to provide a bias reduction that does not come at the
expense of too large an increase in variance.

Sample sizes of 300 to 500 are not uncommon in the inequality literature, particu-
larly when making comparisons across different states or regions of a country. These
results have important implications for such comparisons. If the distributions across
regions are dissimilar, then the degree of bias in the region-specific inequality mea-
sures will be quite different. Thus any comparison across regions will be affected.
These effects may be quite severe. In the tables we present simulation averages.
There were many cases where the bias was much more severe than the average and
as a consequence, the bias-correction much larger.

In the second simulation exercise, we repeat the same calculations using the log-
normal distribution. The simulated data is generated setting the variance parameter
equal to one and the mean equal to exp{0}. This gives a small amount of skewness
and meets the condition for negative bias: 7, > %CV. Simulation results are sum-

marized in Table 3 and Figure 2. We observe similar results to the first simulation.



For very small sample sizes (below 250) the jackknife bias correction does slightly bet-
ter than 6 but at the expense of a large increase in mean squared error. For larger
sample sizes, the bias-corrected estimator suggested here is equivalent to the jackknife
in performance relative to bias but has a lower mean squared error and would thus
appear to be superior. Both clearly dominate the usual method of estimating CV?2.
The bias correction in this case is much smaller, but it is important to note that most
income distributions are more highly skewed than a log-normal distribution and thus

the degree of bias will generally be larger than this simulation shows.

4 CONCLUSION

The above findings indicate that when the sample is small or moderately large and the
skewness in the distribution is greater than %CV that the almost unbiased estimator
0 will be useful for correcting bias in CV2. In the example from Kenya, the bias
correction is over 4% even with a sample of nearly 2500 observations.  Usually
we consider such sample sizes as immune from small-sample bias problems. The
simulations show that the bias-corrected estimator, on average, performs betten than
the usual method of calculating CV2. The jackknife bias-corrected estimator does
somewhat better at reducing bias, but much worse in a mean squared error sense.
The choice of which technique to use, therefore, is not unambiguous. The increase
in variance needs to be weighed against the improvement in bias.

For comparisons across region and over time, the biases illustrated here may be
important. In particular, if the degree of skewness is different in the different dis-
tributions being compared, then apparent differences in the inequality measure may
in fact simply be driven by differing degrees of bias in the measure. An important
question which is beyond the scope of this paper is whether the relationship shown

here between distribution and bias holds for other inequality measures.
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TABLE 1

Results on Inequality Measures

Unit of income

Exchange rate in $US (at survey date)

Kenyan Shillings
16.04 KS=1.00 US$

Chinese Yuan
4.86 CY=1.00 US$

Survey date 1986 1988
Sample Size 2,424 9,009
HOUSHOLD INCOME KENYA CHINA
Sample statistics

Mean 46,628.95 6,507.26
Median 16,813 5759.00
Average Household Size 3.55 3.53
Variance 25,022,439,640.12 10,873,357
Standard Deviation 158,184.83 3297.48
Skewness coefficient 20.74 2.83

CcvV 3.39 0.50674
CV squared 11.51 0.25678
Corrected CV 3.47 0.5068
Corrected CV squared 12.01 0.25684
Gini coefficient 0.645 0.238
PER-CAPITA INCOME KENYA CHINA
Sample statistics

Mean 12,204.6 1,841.95
Median 7,451.61 1,700.00
Variance 2,403,269,188.45 842,322.83
Standard Deviation 49,023.15 917.78
Skewness coefficient 27.45 3.04

()% 4.02 0.498
CV squared 16.13 0.248
Corrected CV 4.16 0.498
Corrected CV squared 17.28 0.248
Gini coefficient 0.652 0.222
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TABLE 2

Average Bias and Mean Squared Error
for Three Estimators of the Coefficient of Variation

Average Bias Average Mean Squared Error

n é 9 ejlm é 9 ejkn

50 -12.95 -12.98 -9.96 209.2 198.2 264.3
100 -10.04 -9.12 -5.70 185.3 180.9 361.1
150 -8.15 -6.60 -3.63 172.8 190.2 369.8
200 -6.84 -4.93 -2.47 163.3 197.2 343.6
250 -5.77 -3.67 -1.60 153.2 196.7 313.3
300 -5.24 -3.13 -1.51 141.0 183.3 264.3
350 -4.54 -2.38 -0.99 131.9 175.2 239.1
400 -4.00 -1.87 -0.68 122.7 164.0 213.1
450 -3.76 -1.70 -0.72 113.6 149.7 185.6
500 -3.45 -1.46 -0.63 106.2 138.9 166.8

Simulation based on 50000 repetitions (population CV-squared is 18.49)

6 CV-squared

6 : Adjusted CV-squared

0, Jackknife

adjusted CV-squared

TABLE 3

Average Bias and Mean Squared Error

for Three Estimators of the Coefficient of Variation

(simulated lognormal data)

Average Bias Average Mean Squared Error

n é 9 ejlm é 9 ejkn

50 -0.246 -0.150 -0.097 0.985 1.323 2.205
100 -0.154 -0.071 -0.054 0.772 1.098 1.442
150 -0.113 -0.043 -0.036 0.662 0.929 1.101
200 -0.081 -0.021 -0.017 0.646 0.905 1.135
250 -0.071 -0.020 -0.018 0.535 0.726 0.815
300 -0.058 -0.013 -0.012 0.493 0.658 0.719
350 -0.047 -0.006 -0.006 0.446 0.582 0.624
400 -0.043 -0.006 -0.006 0.413 0.536 0.573
450 -0.038 -0.004 -0.004 0.439 0.587 0.663
500 -0.035 -0.004 -0.004 0.361 0.459 0.485

Simulation based on 50000 repetitions (population CV-squared is 1.718)

6: CV-squared

6 : Adjusted CV-squared

0, Jackknife

adjusted CV-squared




