

Index Insurance: Financial Innovations for Agricultural Risk Management and Development

Sommarat Chantarat

Arndt-Corden Department of Economics Australian National University

PSEKP Seminar Series, Gadjah Mada University 30 January 2012

Outline of my talk

- Motivations
- Development and implement index insurance program
- Satellite based livestock insurance in Kenya
- Prospects for Indonesia: Interesting research questions

Insurance and Development

Economic costs of uninsured (weather and natural disaster) risk, especially w/ threshold-based poverty traps

➢ Insurance → protect rural livelihoods and escape poverty

- Provide safety net to prevent collapse of vulnerable populations
- Encourage investment and asset accumulation by the poor
- Induce financial deepening by crowding in credit market and social insurance
- ➢ Insurance → pre-finance effective emergency response and recovery
 - Timely response enhances resilience
 to shocks and reduce costs of
 Nadaraya-Watson estination
 humanitarian responses/social protection programs

Insurance and Agricultural Risk Management

Two types of formal agricultural insurance

Conventional crop insurance

Compensate actual loss, multi-peril or named coverage

- High costs of verifying losses
- Moral hazard and adverse selection
- Existing programs are very costly and largely subsidized

No successful crop insurance in the world, not likely work in rural areas

Index insurance

Compensate specific loss based on objectively measured index NOT actual loss

- Low costs no farm-level loss verification
- Low incentive problems insured cannot influence payout probability
- Challenges in minimizing basis risk

Promise as a market viable instruments, more suitable for rural areas in DCs

Developing Index Insurance Program

1. Identify loss to be insured (L_{lt})

• Identify uninsured loss by testing simple consumption risk sharing hypothesis (e.g., Townsend 1994), L_{lt} is uninsured if $H_0: c = 0$ is rejected $\Delta C_{lt} = a_0 + a_l + a_t + bX_{lt} + cL_{lt} + \varepsilon_{lt}$

2. Select objectively measured index (θ_{lt})

• Highly correlated with loss, available reliably in near-real time, non-manipulable by insured parties, high spatial distribution, at least 20 years historical profiles

3. Quantify insurable loss from index ($\hat{L}(\theta_{lt})$)

- θ_{lt} needs to explain most of the loss variations: $L_{lt} = L(\theta_{lt}) + \varepsilon_{lt} \rightarrow \hat{L}(\theta_{lt})$
- Use micro data of L_{lt} to minimize basis risk

4. Identify optimal contract structure

- Payoff based on $\hat{L}(\theta_{lt})$: $\Pi_{lt}(\hat{L}(\theta_{lt})|L^*) = max(\hat{L}(\theta_{lt}) L^*, 0) \times sum insured$
- Stand-alone contract, group-based contract, interlinked insurance-loan

Developing Index Insurance Program

5. Actuarial pricing

• Actuarial fair premium: burn rate and/or Monte Carlo simulation based on $f(\theta_{lt})$ $p_l(\hat{L}(\theta_{lt})|L^*) = E(\Pi_{lt}(\hat{L}(\theta_{lt})|L^*)) = \int \Pi_{lt}(\hat{L}(\theta_{lt})|L^*)df(\theta_{lt})$

6. Ex-ante contract evaluation

- Simulated welfare and behavior response impacts using dynamic model/data
- Field experiments to elicit willingness to pay among targeted clients

7. Develop education and extension tools for pilot sale

- Simplified products, financial educational tools, targeted learning network
- 8. Identify cost effective delivery mechanisms
 - Delivery through mobile technology, local financial institutions, network groups

9. Long-term micro-level impact assessment

• Randomized survey and experiments to elicit demand, impacts on welfare, induced behavior responses from control and treatment groups

(1) Identify loss to be insured:

Catastrophic livestock losses from drought as key uninsured risk in this area

 Observed household welfare co-move with livestock losses

Australian National University

Satellite vegetation based livestock insurance in Kenya

(2) Selecting index: NASA MODIS Normalized difference vegetation index (NDVI) as index

- Indication of availability of vegetation over rangeland
- Spatiotemporal rich (1×1 km²)
- Available in near-real time every 15 day (1982-present)

(3) Quantify insurable loss from index: construct predicted livestock loss from the empirical model: $M_{lt} = M(ZNDVI_{lt}) + \varepsilon_{lt}$

(3) Quantify insurable loss from index: construct predicted livestock loss from the empirical model: $M_{lt} = M(ZNDVI_{lt}) + \varepsilon_{lt}$

(3) Quantify insurable loss from index: construct predicted livestock loss from the empirical model: $M_{lt} = M(ZNDVI_{lt}) + \varepsilon_{lt}$

Regime switching model for zone-specific, seasonal mortality prediction:

 $M_{lt} = \begin{cases} M_1(X(ndvi_{lt})) + \varepsilon_{1lt} & if \ Czndvi_pos_{lt} \ge \gamma \quad (good \ climate \ regime) \\ M_2(X(ndvi_{lt})) + \varepsilon_{2lt} & if \ Czndvi_pos_{lt} < \gamma \quad (bad \ climate \ regime) \end{cases}$

(3) Quantify insurable loss from index: construct predicted livestock loss from the empirical model: $M_{lt} = M(ZNDVI_{lt}) + \varepsilon_{lt}$

Predictive Performance of predicted livestock loss, $\widehat{M}(ZNDVI_{lt})$

- Out-of-sample prediction errors within +-10% (especially in the bad year)
- Predict historical droughts well

(4) Identify optimal contract structure

- Insurable loss: Area average livestock loss indicated by $\widehat{M}(ZNDVI_{lt})$
- Seasonal indemnity payment:

 $\Pi_{\rm lt}(\widehat{M}(\theta_{lt})|M^*,TLU,P_{TLU}) = max(\widehat{M}(ZNDVI_{lt})-M^*,0) \times TLU \times P_{TLU}$

- Coverage: Division level, annual contract (covers two seasonal payouts)
- (5) Actuarial fair premium: (% of sum insured)

Strike (M*)	10%	30%
Fair premium rate	6.8%	3.2%
$Pr(\widehat{M_l}(NDVI) > M^*)$	34.5%	19.8%

(6) Ex-ante contract evaluation: simulations of stochastic dynamic model based on observed household dynamic data

Pastoral production function:

 $f(H_{it}, X_{it}) = \begin{cases} f_L(H_{it}, X_{it}) + b_{it} & \text{if } H_{it} \le H^* \\ f_H(H_{it}, X_{it}) & \text{if } H_{it} > H^* \end{cases}$

Household budget constraint:

Herd dynamics with stochastic environment:

 $H_{it+1} = (1 + g(NDVI_t, \varepsilon_{it}) - m(NDVI_t, \varepsilon_{it})) H_{it} + i_{it}$

Household Intertemporal problem:

 $c_{it} + i_{it} \le f(H_{it}, X_{it}) + (W_{it} - W_{it+1}) + (\pi - \rho)h_{it}H_{it} \quad V(H_{it}) = \max_{c_{it}, h_{it}} u(c_{it}) + \delta_i E(V(H_{t+1})|\Gamma_i(NDVI_t, \varepsilon_{it}, \pi_t))$

- In most case, insured herd SOSD uninsured herd: insurance reduces prob. of extreme loss
- Contract seems to be effective despite the existence of basis risk!

(6) Ex-ante contract evaluation: Willingness to pay experiments (210 hhs)

	1	2	3	4	5	6	7	
Contract Coverage	100% Compulsory Coverage				Insured	Insured Chooses Coverage level		
Model (Dependent Variable)	Probit (Willing to purchase = 1)			Ordered Prob	Ordered Probit (0, 25%, 50%, 75%, 100%)			
Premium rate	-0.146***	-0.140***	-0.143***	-0.135***	-0.453***	-0.452***	-0.454***	
	(0.036)	(0.033)	(0.039)	(0.036)	(0.046)	(0.0455)	(0.045)	
Preference								
Discount rate	-0.184	-0.177	-0.190	-0.165	-0.085	-0.106	-0.077	
	(0.158)	(0.157)	(0.139)	(0.149)	(0.225)	(0.224)	(0.231)	
Risk aversion	-0.085	-0.083		-0.085	-0.303*		-0.308**	
	(0.123)	(0.112)		(0.120)	(0.156)		(0.150)	
Risk aversion × Have bank account		1.247***		1.249***	0.0448		0.042	
		(0.180)		(0.234)	(0.0328)		(0.034)	
Ambiguity aversion	-0.005		-0.037	-0.029		-0.0340	-0.001	
5 ,	(0.031)		(0.031)	(0.035)		(0.169)	(0.137)	
Ambiguity aversion × Have bank account	(0.0376	0.0375		0.0309	0.237	
			(0.034)	(0.034)		(0.0583)	(0.547)	
Loss experience and perception			(0.02.1)	(0.021)		(0.0505)	(0.217)	
Probability of m it>200% mean i	0 771***	0 728***	0 705**	0 687**	1 524**	1 440**	1 533**	
riccasing of m_n=20070 mean_r	(0.284)	(0.282)	(0.281)	(0.274)	(0.617)	(0.606)	(0.598)	
Experienced very had long rain 2008	0 143**	0.135**	0.107	0 110*	0.208	0.164	0.207	
(=1 if ves)	(0.067)	(0.065)	(0.069)	(0.071)	(0.199)	(0.207)	(0.212)	
Expected livestock loss in 2000	0.708	0.679	0.690	0.620	1 568***	1 631***	1 550***	
Lapeeted investoer 1035 in 2005	(0.520)	(0.408)	(0.524)	(0.532)	(0 317)	(0.320)	(0.326)	
Basis sick (% false perative when area	0.407***	0.475***	0.488***	0.450***	0.170	0.155	0.174	
Average loss trigger 10% strike)	(0.164)	(0.154)	(0 173)	(0.152)	(0.230)	(0.238)	(0.235)	
Wealth and avadit constraint	(0.104)	(0.154)	(0.173)	(0.152)	(0.239)	(0.238)	(0.235)	
L n (total livestock)	0.005***	0.016***	0.016***	0.206***	0 270***	0 27/***	0 277***	
LII (IOIAI IIVESIOCK)	-0.225	-0.210	-0.210	-0.200	-0.379	-0.374	-0.377	
In (non-livertack and history assets)	(0.017)	(0.016)	(0.010)	(0.015)	(0.119)	(0.124)	(0.122)	
Lit (non-investock productive assets)	(0.007)	(0.007)	(0.005)	0.055	(0.0169)	(0.0158)	0.008	
Landhalding	(0.007)	(0.007)	(0.005)	(0.000)	(0.0108)	(0.0158)	(0.010)	
Landnolding	0.030*	(0.024)	(0.045)	0.044	-0.0280	-0.0134	-0.020	
Conditions to involve 1 (Const	(0.020)	(0.024)	(0.027)	(0.025)	(0.0557)	(0.0054)	(0.000)	
Credit constrained (=1 if yes)	0.225	0.215***	0.175*	0.180*	0.208	0.182	0.202	
	(0.083)	(0.078)	(0.094)	(0.094)	(0.214)	(0.220)	(0.211)	
Financial experience and literacy								
Have bank account (=1 if yes)	0.337***	0.158	0.32/***	0.155	0.0310	0.0729	-0.137	
	(0.022)	(0.130)	(0.017)	(0.152)	(0.409)	(0.376)	(0.788)	
Belong to active network (=1 if yes)	0.321***	0.300***	0.306***	0.289***	0.483**	0.452*	0.503**	
	(0.037)	(0.030)	(0.047)	(0.038)	(0.234)	(0.241)	(0.256)	
Head education (=1 if yes)	-0.033*	-0.032*	-0.040**	-0.037*	-0.0550*	-0.0380	-0.054*	
	(0.019)	(0.017)	(0.019)	(0.019)	(0.0312)	(0.0316)	(0.031)	

Demand determinants

- (+) familiarity with fn. product
- (+) with interacting financial experience with risk aversion
- (+) perceived loss profile
- (+) expected loss
- (+) wealth (wealth eff.)
- (-) perceived basis risk
- (+) credit constraint (buffer stock)

Premium Vs. Chosen Coverage

Modest demand exists at 20%+fair Less elastic among the rich

(7) Develop education and extension tools: using experimental games with real incentives

- Replicate the pastoral livelihood in the community
- Teach how this insurance work and how it will affect herd dynamics
- The game also allows us to study hh's behavior responses from insurance!

(8) Identify cost effective delivery mechanisms to remote clients using mobile technology

- The contract has been commercialized in northern Kenya since 2010
- Contracts sold to among 10% of populations in the first year
- Local insurance company underwrites the contract with Swiss Re

(9) Long-term micro-level impact assessment

- 4-year panel household survey, baseline (2009) with annual repeat
- **Challenges:** (i) cannot randomize eligibility for insurance (ii) low uptake reduces power of estimating avg. treatment effects
- Hence quasi-experiment with encouragement design: use IV approach with multiple instruments (to generate variation in insurance purchase)
- We randomize 3 instruments:
 - (1) Insurance education (e_{it}) (2) Eligibility for cash transfer (t_{it}) (3) Discount coupon at 0-60% (d_{it})

	Cash transfer	No cash transfer
Educated	4 sites	4 sites
Not educated	4 sites	4 control sites

- **Survey instruments**: welfare, Induced behavior responses, formal/informal access to credit, social insurance, environmental impacts
- Empirical estimations of demand determinants and impacts of insurance:

First stage: $D_{it} = \gamma_0 + \gamma_1 e_{it} + \gamma_2 t_{it} + \gamma_3 d_{it} + \varepsilon_{it}$ Second stage: $\Delta Y_{it} = \rho_0 + \rho_1 D_{it} + \rho_2 X_{it} + D_{it} X_{it} \rho_3 + \delta_i + \varepsilon_{it}$

Stay tuned!

References

- Barrett, C.B. et al. (2008) "Altering Poverty Dynamics with Index Insurance," BASIS Brief 2008-08.
- Barrett, C.B. and M.R. Carter (2007) "Asset Thresholds and Social Protection," *IDS Bulletin* 38(3):34-38.
- Carter, M.R. et al. (2008). "Insuring the Never-before Insured: Explaining Index Insurance through Financial Education Games," *BASIS Brief* 2008-07.
- Chantarat, S. et al. (forthcoming) "Designing Index-based Livestock Insurance for Managing Asset Risk in Northern Kenya." *Journal of Risk and Insurance*
- Chantarat, S. et al. (2011) "The Performance of Index-based Livestock Insurance: Ex Ante Assessment in the Presence of a Poverty Trap." Mimeo
- Chantarat, S. et al. (2011) "Willingness to Pay for Index-based Livestock Insurance: Results from a Field Experiment." Mimeo
- IBLI official site: http://livestockinsurance.wordpress.com/

Prospects for Index Insurance in Indonesia

Interesting research questions

- The optimal contract design as part of existing risk management system (complementarities with self-, informal-insurance, government programs)
- Impact assessment on welfare, productive investments, existing risk management mechanisms
- Designs of financial educational tools
- Viability of flood index insurance (e.g., using satellite imagery?) as part of overall flood management system

